sage: H = DirichletGroup(608)
pari: g = idealstar(,608,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 288 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{72}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{608}(191,\cdot)$, $\chi_{608}(229,\cdot)$, $\chi_{608}(97,\cdot)$ |
First 32 of 288 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{608}(1,\cdot)\) | 608.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{608}(3,\cdot)\) | 608.bt | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) |
\(\chi_{608}(5,\cdot)\) | 608.bs | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{19}{36}\right)\) |
\(\chi_{608}(7,\cdot)\) | 608.bc | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{608}(9,\cdot)\) | 608.bq | 36 | no | \(1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{608}(11,\cdot)\) | 608.bk | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{608}(13,\cdot)\) | 608.bv | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) |
\(\chi_{608}(15,\cdot)\) | 608.bh | 18 | no | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) |
\(\chi_{608}(17,\cdot)\) | 608.bf | 18 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{608}(21,\cdot)\) | 608.bv | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) |
\(\chi_{608}(23,\cdot)\) | 608.bp | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{608}(25,\cdot)\) | 608.bq | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{608}(27,\cdot)\) | 608.bn | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{608}(29,\cdot)\) | 608.bv | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) |
\(\chi_{608}(31,\cdot)\) | 608.n | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{608}(33,\cdot)\) | 608.bd | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{608}(35,\cdot)\) | 608.bu | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{7}{36}\right)\) |
\(\chi_{608}(37,\cdot)\) | 608.w | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) |
\(\chi_{608}(39,\cdot)\) | 608.l | 4 | no | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(1\) |
\(\chi_{608}(41,\cdot)\) | 608.br | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{608}(43,\cdot)\) | 608.bu | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) |
\(\chi_{608}(45,\cdot)\) | 608.bm | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{608}(47,\cdot)\) | 608.bg | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{608}(49,\cdot)\) | 608.t | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{608}(51,\cdot)\) | 608.bt | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) |
\(\chi_{608}(53,\cdot)\) | 608.bv | 72 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{35}{36}\right)\) |
\(\chi_{608}(55,\cdot)\) | 608.bp | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{608}(59,\cdot)\) | 608.bt | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) |
\(\chi_{608}(61,\cdot)\) | 608.bs | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) |
\(\chi_{608}(63,\cdot)\) | 608.bj | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) |
\(\chi_{608}(65,\cdot)\) | 608.r | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{608}(67,\cdot)\) | 608.bt | 72 | yes | \(1\) | \(1\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{23}{36}\right)\) |