Properties

Modulus $608$
Structure \(C_{2}\times C_{2}\times C_{72}\)
Order $288$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(608)
 
pari: g = idealstar(,608,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 288
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{72}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{608}(191,\cdot)$, $\chi_{608}(229,\cdot)$, $\chi_{608}(97,\cdot)$

First 32 of 288 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{608}(1,\cdot)\) 608.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{608}(3,\cdot)\) 608.bt 72 yes \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{608}(5,\cdot)\) 608.bs 72 yes \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{608}(7,\cdot)\) 608.bc 12 no \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{608}(9,\cdot)\) 608.bq 36 no \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{608}(11,\cdot)\) 608.bk 24 yes \(-1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{608}(13,\cdot)\) 608.bv 72 yes \(-1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{608}(15,\cdot)\) 608.bh 18 no \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{608}(17,\cdot)\) 608.bf 18 no \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{608}(21,\cdot)\) 608.bv 72 yes \(-1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{608}(23,\cdot)\) 608.bp 36 no \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{608}(25,\cdot)\) 608.bq 36 no \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{608}(27,\cdot)\) 608.bn 24 yes \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{608}(29,\cdot)\) 608.bv 72 yes \(-1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{608}(31,\cdot)\) 608.n 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{608}(33,\cdot)\) 608.bd 18 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{608}(35,\cdot)\) 608.bu 72 yes \(-1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{608}(37,\cdot)\) 608.w 8 yes \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(-i\)
\(\chi_{608}(39,\cdot)\) 608.l 4 no \(-1\) \(1\) \(i\) \(i\) \(1\) \(-1\) \(-i\) \(-i\) \(-1\) \(1\) \(i\) \(1\)
\(\chi_{608}(41,\cdot)\) 608.br 36 no \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{608}(43,\cdot)\) 608.bu 72 yes \(-1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{608}(45,\cdot)\) 608.bm 24 yes \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{608}(47,\cdot)\) 608.bg 18 no \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{608}(49,\cdot)\) 608.t 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{608}(51,\cdot)\) 608.bt 72 yes \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{608}(53,\cdot)\) 608.bv 72 yes \(-1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{608}(55,\cdot)\) 608.bp 36 no \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{608}(59,\cdot)\) 608.bt 72 yes \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{608}(61,\cdot)\) 608.bs 72 yes \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{608}(63,\cdot)\) 608.bj 18 no \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{608}(65,\cdot)\) 608.r 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{608}(67,\cdot)\) 608.bt 72 yes \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{23}{36}\right)\)
Click here to search among the remaining 256 characters.