Properties

Label 6069.cx
Modulus $6069$
Conductor $2023$
Order $408$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([0,272,279])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(25,6069)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2023.bl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

First 31 of 128 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{6069}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{379}{408}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{161}{408}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{61}{136}\right)\)
\(\chi_{6069}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{91}{408}\right)\) \(e\left(\frac{79}{408}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{35}{136}\right)\)
\(\chi_{6069}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{161}{408}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{79}{408}\right)\) \(e\left(\frac{91}{408}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{135}{136}\right)\)
\(\chi_{6069}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{157}{408}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{371}{408}\right)\) \(e\left(\frac{71}{408}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{59}{136}\right)\)
\(\chi_{6069}(172,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{217}{408}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{71}{408}\right)\) \(e\left(\frac{371}{408}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{111}{136}\right)\)
\(\chi_{6069}(247,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{191}{408}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{337}{408}\right)\) \(e\left(\frac{37}{408}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{25}{136}\right)\)
\(\chi_{6069}(298,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{7}{408}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{305}{408}\right)\) \(e\left(\frac{341}{408}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{65}{136}\right)\)
\(\chi_{6069}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{395}{408}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{133}{408}\right)\) \(e\left(\frac{241}{408}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{93}{136}\right)\)
\(\chi_{6069}(382,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{204}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{307}{408}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{29}{408}\right)\) \(e\left(\frac{209}{408}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{173}{204}\right)\) \(e\left(\frac{53}{136}\right)\)
\(\chi_{6069}(457,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{365}{408}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{283}{408}\right)\) \(e\left(\frac{295}{408}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{67}{136}\right)\)
\(\chi_{6069}(478,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{281}{408}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{295}{408}\right)\) \(e\left(\frac{283}{408}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{103}{136}\right)\)
\(\chi_{6069}(508,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{37}{408}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{155}{408}\right)\) \(e\left(\frac{287}{408}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{91}{136}\right)\)
\(\chi_{6069}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{337}{408}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{287}{408}\right)\) \(e\left(\frac{155}{408}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{79}{136}\right)\)
\(\chi_{6069}(604,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{263}{408}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{385}{408}\right)\) \(e\left(\frac{397}{408}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{33}{136}\right)\)
\(\chi_{6069}(655,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{79}{408}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{353}{408}\right)\) \(e\left(\frac{293}{408}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{73}{136}\right)\)
\(\chi_{6069}(739,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{204}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{235}{408}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{257}{408}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{161}{204}\right)\) \(e\left(\frac{45}{136}\right)\)
\(\chi_{6069}(814,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{245}{408}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{67}{408}\right)\) \(e\left(\frac{103}{408}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{99}{136}\right)\)
\(\chi_{6069}(835,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{401}{408}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{103}{408}\right)\) \(e\left(\frac{67}{408}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{71}{136}\right)\)
\(\chi_{6069}(865,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{325}{408}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{347}{408}\right)\) \(e\left(\frac{95}{408}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{123}{136}\right)\)
\(\chi_{6069}(886,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{204}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{49}{408}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{95}{408}\right)\) \(e\left(\frac{347}{408}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{11}{204}\right)\) \(e\left(\frac{47}{136}\right)\)
\(\chi_{6069}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{335}{408}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{25}{408}\right)\) \(e\left(\frac{349}{408}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{41}{136}\right)\)
\(\chi_{6069}(1012,\cdot)\) \(1\) \(1\) \(e\left(\frac{125}{204}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{151}{408}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{401}{408}\right)\) \(e\left(\frac{245}{408}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{81}{136}\right)\)
\(\chi_{6069}(1045,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{251}{408}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{37}{408}\right)\) \(e\left(\frac{337}{408}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{77}{136}\right)\)
\(\chi_{6069}(1096,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{163}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{341}{408}\right)\) \(e\left(\frac{305}{408}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{37}{136}\right)\)
\(\chi_{6069}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{259}{408}\right)\) \(e\left(\frac{319}{408}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{103}{204}\right)\) \(e\left(\frac{131}{136}\right)\)
\(\chi_{6069}(1192,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{204}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{113}{408}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{319}{408}\right)\) \(e\left(\frac{259}{408}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{67}{204}\right)\) \(e\left(\frac{39}{136}\right)\)
\(\chi_{6069}(1222,\cdot)\) \(1\) \(1\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{205}{408}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{131}{408}\right)\) \(e\left(\frac{311}{408}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{19}{136}\right)\)
\(\chi_{6069}(1243,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{169}{408}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{311}{408}\right)\) \(e\left(\frac{131}{408}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{15}{136}\right)\)
\(\chi_{6069}(1318,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{204}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{407}{408}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{73}{408}\right)\) \(e\left(\frac{301}{408}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{49}{136}\right)\)
\(\chi_{6069}(1369,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{223}{408}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{41}{408}\right)\) \(e\left(\frac{197}{408}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{125}{204}\right)\) \(e\left(\frac{89}{136}\right)\)
\(\chi_{6069}(1402,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{179}{408}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{397}{408}\right)\) \(e\left(\frac{385}{408}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{61}{204}\right)\) \(e\left(\frac{69}{136}\right)\)