Properties

Label 6069.604
Modulus $6069$
Conductor $2023$
Order $408$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([0,136,171]))
 
Copy content pari:[g,chi] = znchar(Mod(604,6069))
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(604,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6069.cx

\(\chi_{6069}(25,\cdot)\) \(\chi_{6069}(100,\cdot)\) \(\chi_{6069}(121,\cdot)\) \(\chi_{6069}(151,\cdot)\) \(\chi_{6069}(172,\cdot)\) \(\chi_{6069}(247,\cdot)\) \(\chi_{6069}(298,\cdot)\) \(\chi_{6069}(331,\cdot)\) \(\chi_{6069}(382,\cdot)\) \(\chi_{6069}(457,\cdot)\) \(\chi_{6069}(478,\cdot)\) \(\chi_{6069}(508,\cdot)\) \(\chi_{6069}(529,\cdot)\) \(\chi_{6069}(604,\cdot)\) \(\chi_{6069}(655,\cdot)\) \(\chi_{6069}(739,\cdot)\) \(\chi_{6069}(814,\cdot)\) \(\chi_{6069}(835,\cdot)\) \(\chi_{6069}(865,\cdot)\) \(\chi_{6069}(886,\cdot)\) \(\chi_{6069}(961,\cdot)\) \(\chi_{6069}(1012,\cdot)\) \(\chi_{6069}(1045,\cdot)\) \(\chi_{6069}(1096,\cdot)\) \(\chi_{6069}(1171,\cdot)\) \(\chi_{6069}(1192,\cdot)\) \(\chi_{6069}(1222,\cdot)\) \(\chi_{6069}(1243,\cdot)\) \(\chi_{6069}(1318,\cdot)\) \(\chi_{6069}(1369,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

Values on generators

\((2024,4336,3760)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{57}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 6069 }(604, a) \) \(1\)\(1\)\(e\left(\frac{61}{204}\right)\)\(e\left(\frac{61}{102}\right)\)\(e\left(\frac{263}{408}\right)\)\(e\left(\frac{61}{68}\right)\)\(e\left(\frac{385}{408}\right)\)\(e\left(\frac{397}{408}\right)\)\(e\left(\frac{5}{34}\right)\)\(e\left(\frac{10}{51}\right)\)\(e\left(\frac{109}{204}\right)\)\(e\left(\frac{33}{136}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6069 }(604,a) \;\) at \(\;a = \) e.g. 2