Properties

Label 6069.cv
Modulus $6069$
Conductor $6069$
Order $408$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(408)) M = H._module chi = DirichletCharacter(H, M([204,340,171])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(26,6069)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6069\)
Conductor: \(6069\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(408\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{408})$
Fixed field: Number field defined by a degree 408 polynomial (not computed)

First 31 of 128 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{6069}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{263}{408}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{181}{408}\right)\) \(e\left(\frac{193}{408}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{33}{136}\right)\)
\(\chi_{6069}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{139}{408}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{257}{408}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{125}{136}\right)\)
\(\chi_{6069}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{301}{408}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{263}{408}\right)\) \(e\left(\frac{179}{408}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{75}{136}\right)\)
\(\chi_{6069}(206,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{73}{408}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{179}{408}\right)\) \(e\left(\frac{263}{408}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{95}{136}\right)\)
\(\chi_{6069}(236,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{204}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{245}{408}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{271}{408}\right)\) \(e\left(\frac{307}{408}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{99}{136}\right)\)
\(\chi_{6069}(257,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{204}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{401}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{307}{408}\right)\) \(e\left(\frac{271}{408}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{13}{204}\right)\) \(e\left(\frac{71}{136}\right)\)
\(\chi_{6069}(332,\cdot)\) \(1\) \(1\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{247}{408}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{113}{408}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{95}{204}\right)\) \(e\left(\frac{1}{136}\right)\)
\(\chi_{6069}(383,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{335}{408}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{229}{408}\right)\) \(e\left(\frac{145}{408}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{41}{136}\right)\)
\(\chi_{6069}(416,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{67}{408}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{209}{408}\right)\) \(e\left(\frac{29}{408}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{167}{204}\right)\) \(e\left(\frac{117}{136}\right)\)
\(\chi_{6069}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{251}{408}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{241}{408}\right)\) \(e\left(\frac{133}{408}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{77}{136}\right)\)
\(\chi_{6069}(542,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{181}{408}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{47}{408}\right)\) \(e\left(\frac{395}{408}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{107}{136}\right)\)
\(\chi_{6069}(563,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{204}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{193}{408}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{395}{408}\right)\) \(e\left(\frac{47}{408}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{137}{204}\right)\) \(e\left(\frac{63}{136}\right)\)
\(\chi_{6069}(593,\cdot)\) \(1\) \(1\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{55}{408}\right)\) \(e\left(\frac{115}{408}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{1}{204}\right)\) \(e\left(\frac{131}{136}\right)\)
\(\chi_{6069}(614,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{204}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{113}{408}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{115}{408}\right)\) \(e\left(\frac{55}{408}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{169}{204}\right)\) \(e\left(\frac{39}{136}\right)\)
\(\chi_{6069}(689,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{319}{408}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{173}{408}\right)\) \(e\left(\frac{65}{408}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{9}{136}\right)\)
\(\chi_{6069}(740,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{204}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{407}{408}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{277}{408}\right)\) \(e\left(\frac{97}{408}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{31}{204}\right)\) \(e\left(\frac{49}{136}\right)\)
\(\chi_{6069}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{403}{408}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{161}{408}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{155}{204}\right)\) \(e\left(\frac{109}{136}\right)\)
\(\chi_{6069}(824,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{179}{408}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{193}{408}\right)\) \(e\left(\frac{181}{408}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{69}{136}\right)\)
\(\chi_{6069}(899,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{61}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{239}{408}\right)\) \(e\left(\frac{203}{408}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{3}{136}\right)\)
\(\chi_{6069}(920,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{313}{408}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{203}{408}\right)\) \(e\left(\frac{239}{408}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{31}{136}\right)\)
\(\chi_{6069}(950,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{5}{408}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{247}{408}\right)\) \(e\left(\frac{331}{408}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{27}{136}\right)\)
\(\chi_{6069}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{233}{408}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{331}{408}\right)\) \(e\left(\frac{247}{408}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{121}{204}\right)\) \(e\left(\frac{7}{136}\right)\)
\(\chi_{6069}(1097,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{204}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{71}{408}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{325}{408}\right)\) \(e\left(\frac{49}{408}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{43}{204}\right)\) \(e\left(\frac{57}{136}\right)\)
\(\chi_{6069}(1130,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{204}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{331}{408}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{113}{408}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{143}{204}\right)\) \(e\left(\frac{101}{136}\right)\)
\(\chi_{6069}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{204}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{107}{408}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{145}{408}\right)\) \(e\left(\frac{229}{408}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{151}{204}\right)\) \(e\left(\frac{61}{136}\right)\)
\(\chi_{6069}(1256,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{349}{408}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{23}{408}\right)\) \(e\left(\frac{11}{408}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{35}{136}\right)\)
\(\chi_{6069}(1277,\cdot)\) \(1\) \(1\) \(e\left(\frac{197}{204}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{25}{408}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{11}{408}\right)\) \(e\left(\frac{23}{408}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{41}{204}\right)\) \(e\left(\frac{135}{136}\right)\)
\(\chi_{6069}(1307,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{293}{408}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{31}{408}\right)\) \(e\left(\frac{139}{408}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{59}{136}\right)\)
\(\chi_{6069}(1328,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{204}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{353}{408}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{139}{408}\right)\) \(e\left(\frac{31}{408}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{73}{204}\right)\) \(e\left(\frac{111}{136}\right)\)
\(\chi_{6069}(1403,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{204}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{55}{408}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{269}{408}\right)\) \(e\left(\frac{377}{408}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{131}{204}\right)\) \(e\left(\frac{25}{136}\right)\)
\(\chi_{6069}(1454,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{204}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{143}{408}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{373}{408}\right)\) \(e\left(\frac{1}{408}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{55}{204}\right)\) \(e\left(\frac{65}{136}\right)\)