sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(408))
M = H._module
chi = DirichletCharacter(H, M([204,340,9]))
pari:[g,chi] = znchar(Mod(1307,6069))
| Modulus: | \(6069\) | |
| Conductor: | \(6069\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(408\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6069}(26,\cdot)\)
\(\chi_{6069}(59,\cdot)\)
\(\chi_{6069}(185,\cdot)\)
\(\chi_{6069}(206,\cdot)\)
\(\chi_{6069}(236,\cdot)\)
\(\chi_{6069}(257,\cdot)\)
\(\chi_{6069}(332,\cdot)\)
\(\chi_{6069}(383,\cdot)\)
\(\chi_{6069}(416,\cdot)\)
\(\chi_{6069}(467,\cdot)\)
\(\chi_{6069}(542,\cdot)\)
\(\chi_{6069}(563,\cdot)\)
\(\chi_{6069}(593,\cdot)\)
\(\chi_{6069}(614,\cdot)\)
\(\chi_{6069}(689,\cdot)\)
\(\chi_{6069}(740,\cdot)\)
\(\chi_{6069}(773,\cdot)\)
\(\chi_{6069}(824,\cdot)\)
\(\chi_{6069}(899,\cdot)\)
\(\chi_{6069}(920,\cdot)\)
\(\chi_{6069}(950,\cdot)\)
\(\chi_{6069}(971,\cdot)\)
\(\chi_{6069}(1097,\cdot)\)
\(\chi_{6069}(1130,\cdot)\)
\(\chi_{6069}(1181,\cdot)\)
\(\chi_{6069}(1256,\cdot)\)
\(\chi_{6069}(1277,\cdot)\)
\(\chi_{6069}(1307,\cdot)\)
\(\chi_{6069}(1328,\cdot)\)
\(\chi_{6069}(1403,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2024,4336,3760)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{3}{136}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(19\) | \(20\) |
| \( \chi_{ 6069 }(1307, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{204}\right)\) | \(e\left(\frac{73}{102}\right)\) | \(e\left(\frac{293}{408}\right)\) | \(e\left(\frac{5}{68}\right)\) | \(e\left(\frac{31}{408}\right)\) | \(e\left(\frac{139}{408}\right)\) | \(e\left(\frac{14}{17}\right)\) | \(e\left(\frac{22}{51}\right)\) | \(e\left(\frac{97}{204}\right)\) | \(e\left(\frac{59}{136}\right)\) |
sage:chi.jacobi_sum(n)