Properties

Label 6069.cg
Modulus $6069$
Conductor $2023$
Order $102$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([0,17,12])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(52,6069)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2023.bc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{6069}(52,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{5}{34}\right)\)
\(\chi_{6069}(103,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{27}{34}\right)\)
\(\chi_{6069}(409,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{23}{34}\right)\)
\(\chi_{6069}(460,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{11}{34}\right)\)
\(\chi_{6069}(766,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{7}{34}\right)\)
\(\chi_{6069}(817,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{29}{34}\right)\)
\(\chi_{6069}(1123,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{25}{34}\right)\)
\(\chi_{6069}(1174,\cdot)\) \(-1\) \(1\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{13}{34}\right)\)
\(\chi_{6069}(1480,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{9}{34}\right)\)
\(\chi_{6069}(1531,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{31}{34}\right)\)
\(\chi_{6069}(1837,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{27}{34}\right)\)
\(\chi_{6069}(1888,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{15}{34}\right)\)
\(\chi_{6069}(2194,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{11}{34}\right)\)
\(\chi_{6069}(2245,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{33}{34}\right)\)
\(\chi_{6069}(2551,\cdot)\) \(-1\) \(1\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{29}{34}\right)\)
\(\chi_{6069}(2908,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{13}{34}\right)\)
\(\chi_{6069}(2959,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{1}{34}\right)\)
\(\chi_{6069}(3265,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{31}{34}\right)\)
\(\chi_{6069}(3316,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{19}{34}\right)\)
\(\chi_{6069}(3622,\cdot)\) \(-1\) \(1\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{15}{34}\right)\)
\(\chi_{6069}(3673,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{3}{34}\right)\)
\(\chi_{6069}(3979,\cdot)\) \(-1\) \(1\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{33}{34}\right)\)
\(\chi_{6069}(4030,\cdot)\) \(-1\) \(1\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{21}{34}\right)\)
\(\chi_{6069}(4387,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{5}{34}\right)\)
\(\chi_{6069}(4693,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{1}{34}\right)\)
\(\chi_{6069}(4744,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{23}{34}\right)\)
\(\chi_{6069}(5050,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{19}{34}\right)\)
\(\chi_{6069}(5101,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{7}{34}\right)\)
\(\chi_{6069}(5407,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{3}{34}\right)\)
\(\chi_{6069}(5458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{25}{34}\right)\)
\(\chi_{6069}(5764,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{21}{34}\right)\)