Properties

Label 6069.2551
Modulus $6069$
Conductor $2023$
Order $102$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([0,17,90]))
 
Copy content pari:[g,chi] = znchar(Mod(2551,6069))
 

Basic properties

Modulus: \(6069\)
Conductor: \(2023\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2023}(528,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6069.cg

\(\chi_{6069}(52,\cdot)\) \(\chi_{6069}(103,\cdot)\) \(\chi_{6069}(409,\cdot)\) \(\chi_{6069}(460,\cdot)\) \(\chi_{6069}(766,\cdot)\) \(\chi_{6069}(817,\cdot)\) \(\chi_{6069}(1123,\cdot)\) \(\chi_{6069}(1174,\cdot)\) \(\chi_{6069}(1480,\cdot)\) \(\chi_{6069}(1531,\cdot)\) \(\chi_{6069}(1837,\cdot)\) \(\chi_{6069}(1888,\cdot)\) \(\chi_{6069}(2194,\cdot)\) \(\chi_{6069}(2245,\cdot)\) \(\chi_{6069}(2551,\cdot)\) \(\chi_{6069}(2908,\cdot)\) \(\chi_{6069}(2959,\cdot)\) \(\chi_{6069}(3265,\cdot)\) \(\chi_{6069}(3316,\cdot)\) \(\chi_{6069}(3622,\cdot)\) \(\chi_{6069}(3673,\cdot)\) \(\chi_{6069}(3979,\cdot)\) \(\chi_{6069}(4030,\cdot)\) \(\chi_{6069}(4387,\cdot)\) \(\chi_{6069}(4693,\cdot)\) \(\chi_{6069}(4744,\cdot)\) \(\chi_{6069}(5050,\cdot)\) \(\chi_{6069}(5101,\cdot)\) \(\chi_{6069}(5407,\cdot)\) \(\chi_{6069}(5458,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

Values on generators

\((2024,4336,3760)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{15}{17}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 6069 }(2551, a) \) \(-1\)\(1\)\(e\left(\frac{50}{51}\right)\)\(e\left(\frac{49}{51}\right)\)\(e\left(\frac{91}{102}\right)\)\(e\left(\frac{16}{17}\right)\)\(e\left(\frac{89}{102}\right)\)\(e\left(\frac{49}{51}\right)\)\(e\left(\frac{15}{34}\right)\)\(e\left(\frac{47}{51}\right)\)\(e\left(\frac{19}{102}\right)\)\(e\left(\frac{29}{34}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6069 }(2551,a) \;\) at \(\;a = \) e.g. 2