sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,0,0]))
pari:[g,chi] = znchar(Mod(2024,6069))
\(\chi_{6069}(2024,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2024,4336,3760)\) → \((-1,1,1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(19\) | \(20\) |
\( \chi_{ 6069 }(2024, a) \) |
\(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) |
sage:chi.jacobi_sum(n)