Properties

Modulus $6069$
Structure \(C_{2}\times C_{2}\times C_{816}\)
Order $3264$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(6069)
 
Copy content pari:g = idealstar(,6069,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 3264
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{816}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{6069}(2024,\cdot)$, $\chi_{6069}(4336,\cdot)$, $\chi_{6069}(3760,\cdot)$

First 32 of 3264 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{6069}(1,\cdot)\) 6069.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{6069}(2,\cdot)\) 6069.cw 408 yes \(-1\) \(1\) \(e\left(\frac{181}{204}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{53}{408}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{7}{408}\right)\) \(e\left(\frac{367}{408}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{123}{136}\right)\)
\(\chi_{6069}(4,\cdot)\) 6069.cm 204 no \(1\) \(1\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{55}{68}\right)\)
\(\chi_{6069}(5,\cdot)\) 6069.cy 816 yes \(-1\) \(1\) \(e\left(\frac{53}{408}\right)\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{379}{816}\right)\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{485}{816}\right)\) \(e\left(\frac{161}{816}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{197}{272}\right)\)
\(\chi_{6069}(8,\cdot)\) 6069.cl 136 no \(-1\) \(1\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{97}{136}\right)\)
\(\chi_{6069}(10,\cdot)\) 6069.da 816 no \(1\) \(1\) \(e\left(\frac{7}{408}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{485}{816}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{499}{816}\right)\) \(e\left(\frac{79}{816}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{163}{408}\right)\) \(e\left(\frac{171}{272}\right)\)
\(\chi_{6069}(11,\cdot)\) 6069.cz 816 yes \(1\) \(1\) \(e\left(\frac{367}{408}\right)\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{161}{816}\right)\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{79}{816}\right)\) \(e\left(\frac{91}{816}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{211}{408}\right)\) \(e\left(\frac{271}{272}\right)\)
\(\chi_{6069}(13,\cdot)\) 6069.ca 68 no \(-1\) \(1\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{23}{68}\right)\)
\(\chi_{6069}(16,\cdot)\) 6069.cf 102 no \(1\) \(1\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{21}{34}\right)\)
\(\chi_{6069}(19,\cdot)\) 6069.cu 408 no \(-1\) \(1\) \(e\left(\frac{91}{204}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{163}{408}\right)\) \(e\left(\frac{211}{408}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{181}{204}\right)\) \(e\left(\frac{115}{136}\right)\)
\(\chi_{6069}(20,\cdot)\) 6069.cr 272 yes \(-1\) \(1\) \(e\left(\frac{123}{136}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{197}{272}\right)\) \(e\left(\frac{97}{136}\right)\) \(e\left(\frac{171}{272}\right)\) \(e\left(\frac{271}{272}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{115}{136}\right)\) \(e\left(\frac{145}{272}\right)\)
\(\chi_{6069}(22,\cdot)\) 6069.cs 272 no \(-1\) \(1\) \(e\left(\frac{107}{136}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{89}{272}\right)\) \(e\left(\frac{49}{136}\right)\) \(e\left(\frac{31}{272}\right)\) \(e\left(\frac{3}{272}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{131}{136}\right)\) \(e\left(\frac{245}{272}\right)\)
\(\chi_{6069}(23,\cdot)\) 6069.cz 816 yes \(1\) \(1\) \(e\left(\frac{383}{408}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{745}{816}\right)\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{695}{816}\right)\) \(e\left(\frac{563}{816}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{59}{408}\right)\) \(e\left(\frac{215}{272}\right)\)
\(\chi_{6069}(25,\cdot)\) 6069.cx 408 no \(1\) \(1\) \(e\left(\frac{53}{204}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{379}{408}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{77}{408}\right)\) \(e\left(\frac{161}{408}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{185}{204}\right)\) \(e\left(\frac{61}{136}\right)\)
\(\chi_{6069}(26,\cdot)\) 6069.cv 408 yes \(1\) \(1\) \(e\left(\frac{163}{204}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{263}{408}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{181}{408}\right)\) \(e\left(\frac{193}{408}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{7}{204}\right)\) \(e\left(\frac{33}{136}\right)\)
\(\chi_{6069}(29,\cdot)\) 6069.cq 272 no \(1\) \(1\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{201}{272}\right)\) \(e\left(\frac{61}{136}\right)\) \(e\left(\frac{151}{272}\right)\) \(e\left(\frac{19}{272}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{59}{136}\right)\) \(e\left(\frac{101}{272}\right)\)
\(\chi_{6069}(31,\cdot)\) 6069.da 816 no \(1\) \(1\) \(e\left(\frac{253}{408}\right)\) \(e\left(\frac{49}{204}\right)\) \(e\left(\frac{335}{816}\right)\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{25}{816}\right)\) \(e\left(\frac{349}{816}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{121}{408}\right)\) \(e\left(\frac{177}{272}\right)\)
\(\chi_{6069}(32,\cdot)\) 6069.cw 408 yes \(-1\) \(1\) \(e\left(\frac{89}{204}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{265}{408}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{35}{408}\right)\) \(e\left(\frac{203}{408}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{47}{204}\right)\) \(e\left(\frac{71}{136}\right)\)
\(\chi_{6069}(37,\cdot)\) 6069.db 816 no \(-1\) \(1\) \(e\left(\frac{317}{408}\right)\) \(e\left(\frac{113}{204}\right)\) \(e\left(\frac{223}{816}\right)\) \(e\left(\frac{45}{136}\right)\) \(e\left(\frac{41}{816}\right)\) \(e\left(\frac{197}{816}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{125}{408}\right)\) \(e\left(\frac{225}{272}\right)\)
\(\chi_{6069}(38,\cdot)\) 6069.y 12 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\)
\(\chi_{6069}(40,\cdot)\) 6069.bt 48 no \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{6069}(41,\cdot)\) 6069.cr 272 yes \(-1\) \(1\) \(e\left(\frac{129}{136}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{263}{272}\right)\) \(e\left(\frac{115}{136}\right)\) \(e\left(\frac{249}{272}\right)\) \(e\left(\frac{261}{272}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{41}{136}\right)\) \(e\left(\frac{235}{272}\right)\)
\(\chi_{6069}(43,\cdot)\) 6069.ck 136 no \(1\) \(1\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{37}{136}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{19}{136}\right)\) \(e\left(\frac{15}{136}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{1}{136}\right)\)
\(\chi_{6069}(44,\cdot)\) 6069.cz 816 yes \(1\) \(1\) \(e\left(\frac{275}{408}\right)\) \(e\left(\frac{71}{204}\right)\) \(e\left(\frac{373}{816}\right)\) \(e\left(\frac{3}{136}\right)\) \(e\left(\frac{107}{816}\right)\) \(e\left(\frac{743}{816}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{167}{408}\right)\) \(e\left(\frac{219}{272}\right)\)
\(\chi_{6069}(46,\cdot)\) 6069.db 816 no \(-1\) \(1\) \(e\left(\frac{337}{408}\right)\) \(e\left(\frac{133}{204}\right)\) \(e\left(\frac{35}{816}\right)\) \(e\left(\frac{65}{136}\right)\) \(e\left(\frac{709}{816}\right)\) \(e\left(\frac{481}{816}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{241}{408}\right)\) \(e\left(\frac{189}{272}\right)\)
\(\chi_{6069}(47,\cdot)\) 6069.cp 204 yes \(1\) \(1\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{175}{204}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{61}{68}\right)\)
\(\chi_{6069}(50,\cdot)\) 6069.bo 34 no \(-1\) \(1\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{6}{17}\right)\)
\(\chi_{6069}(52,\cdot)\) 6069.cg 102 no \(-1\) \(1\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{5}{34}\right)\)
\(\chi_{6069}(53,\cdot)\) 6069.cw 408 yes \(-1\) \(1\) \(e\left(\frac{149}{204}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{109}{408}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{407}{408}\right)\) \(e\left(\frac{239}{408}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{191}{204}\right)\) \(e\left(\frac{99}{136}\right)\)
\(\chi_{6069}(55,\cdot)\) 6069.ca 68 no \(-1\) \(1\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{49}{68}\right)\)
\(\chi_{6069}(58,\cdot)\) 6069.db 816 no \(-1\) \(1\) \(e\left(\frac{287}{408}\right)\) \(e\left(\frac{83}{204}\right)\) \(e\left(\frac{709}{816}\right)\) \(e\left(\frac{15}{136}\right)\) \(e\left(\frac{467}{816}\right)\) \(e\left(\frac{791}{816}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{359}{408}\right)\) \(e\left(\frac{75}{272}\right)\)
\(\chi_{6069}(59,\cdot)\) 6069.cv 408 yes \(1\) \(1\) \(e\left(\frac{59}{204}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{139}{408}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{257}{408}\right)\) \(e\left(\frac{389}{408}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{179}{204}\right)\) \(e\left(\frac{125}{136}\right)\)
Click here to search among the remaining 3232 characters.