Properties

Label 6025.ht
Modulus $6025$
Conductor $6025$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6025, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([76,7])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(213,6025)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6025\)
Conductor: \(6025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{6025}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{13}{80}\right)\)
\(\chi_{6025}(508,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{21}{80}\right)\)
\(\chi_{6025}(1278,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{49}{80}\right)\)
\(\chi_{6025}(1353,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{29}{80}\right)\)
\(\chi_{6025}(1827,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{47}{80}\right)\)
\(\chi_{6025}(2433,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{1}{80}\right)\)
\(\chi_{6025}(2438,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{53}{80}\right)\)
\(\chi_{6025}(2467,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{51}{80}\right)\)
\(\chi_{6025}(2503,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{69}{80}\right)\)
\(\chi_{6025}(2548,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{37}{80}\right)\)
\(\chi_{6025}(2578,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{9}{80}\right)\)
\(\chi_{6025}(2672,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{79}{80}\right)\)
\(\chi_{6025}(2752,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{7}{80}\right)\)
\(\chi_{6025}(3048,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{57}{80}\right)\)
\(\chi_{6025}(3238,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{73}{80}\right)\)
\(\chi_{6025}(3272,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{19}{80}\right)\)
\(\chi_{6025}(3317,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{11}{80}\right)\)
\(\chi_{6025}(3833,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{41}{80}\right)\)
\(\chi_{6025}(4423,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{80}\right)\)
\(\chi_{6025}(4462,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{43}{80}\right)\)
\(\chi_{6025}(4562,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{63}{80}\right)\)
\(\chi_{6025}(4777,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{27}{80}\right)\)
\(\chi_{6025}(4837,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{23}{80}\right)\)
\(\chi_{6025}(4922,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{59}{80}\right)\)
\(\chi_{6025}(4923,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{77}{80}\right)\)
\(\chi_{6025}(4937,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{3}{80}\right)\)
\(\chi_{6025}(5438,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{80}\right)\)
\(\chi_{6025}(5522,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{39}{80}\right)\)
\(\chi_{6025}(5758,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{61}{80}\right)\)
\(\chi_{6025}(5817,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{71}{80}\right)\)
\(\chi_{6025}(5827,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{67}{80}\right)\)