sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6025, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([44,63]))
pari:[g,chi] = znchar(Mod(2548,6025))
Modulus: | \(6025\) | |
Conductor: | \(6025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6025}(213,\cdot)\)
\(\chi_{6025}(508,\cdot)\)
\(\chi_{6025}(1278,\cdot)\)
\(\chi_{6025}(1353,\cdot)\)
\(\chi_{6025}(1827,\cdot)\)
\(\chi_{6025}(2433,\cdot)\)
\(\chi_{6025}(2438,\cdot)\)
\(\chi_{6025}(2467,\cdot)\)
\(\chi_{6025}(2503,\cdot)\)
\(\chi_{6025}(2548,\cdot)\)
\(\chi_{6025}(2578,\cdot)\)
\(\chi_{6025}(2672,\cdot)\)
\(\chi_{6025}(2752,\cdot)\)
\(\chi_{6025}(3048,\cdot)\)
\(\chi_{6025}(3238,\cdot)\)
\(\chi_{6025}(3272,\cdot)\)
\(\chi_{6025}(3317,\cdot)\)
\(\chi_{6025}(3833,\cdot)\)
\(\chi_{6025}(4423,\cdot)\)
\(\chi_{6025}(4462,\cdot)\)
\(\chi_{6025}(4562,\cdot)\)
\(\chi_{6025}(4777,\cdot)\)
\(\chi_{6025}(4837,\cdot)\)
\(\chi_{6025}(4922,\cdot)\)
\(\chi_{6025}(4923,\cdot)\)
\(\chi_{6025}(4937,\cdot)\)
\(\chi_{6025}(5438,\cdot)\)
\(\chi_{6025}(5522,\cdot)\)
\(\chi_{6025}(5758,\cdot)\)
\(\chi_{6025}(5817,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2652,2176)\) → \((e\left(\frac{11}{20}\right),e\left(\frac{63}{80}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 6025 }(2548, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{7}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{39}{80}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{37}{80}\right)\) |
sage:chi.jacobi_sum(n)