sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(592, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,7]))
pari:[g,chi] = znchar(Mod(91,592))
Modulus: | \(592\) | |
Conductor: | \(592\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{592}(59,\cdot)\)
\(\chi_{592}(91,\cdot)\)
\(\chi_{592}(131,\cdot)\)
\(\chi_{592}(163,\cdot)\)
\(\chi_{592}(235,\cdot)\)
\(\chi_{592}(291,\cdot)\)
\(\chi_{592}(315,\cdot)\)
\(\chi_{592}(331,\cdot)\)
\(\chi_{592}(483,\cdot)\)
\(\chi_{592}(499,\cdot)\)
\(\chi_{592}(523,\cdot)\)
\(\chi_{592}(579,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((223,149,113)\) → \((-1,i,e\left(\frac{7}{36}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 592 }(91, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)