sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5712, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,36,24,32,15]))
pari:[g,chi] = znchar(Mod(515,5712))
Modulus: | \(5712\) | |
Conductor: | \(5712\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5712}(11,\cdot)\)
\(\chi_{5712}(275,\cdot)\)
\(\chi_{5712}(347,\cdot)\)
\(\chi_{5712}(515,\cdot)\)
\(\chi_{5712}(947,\cdot)\)
\(\chi_{5712}(1115,\cdot)\)
\(\chi_{5712}(1187,\cdot)\)
\(\chi_{5712}(1451,\cdot)\)
\(\chi_{5712}(2459,\cdot)\)
\(\chi_{5712}(2795,\cdot)\)
\(\chi_{5712}(2963,\cdot)\)
\(\chi_{5712}(3539,\cdot)\)
\(\chi_{5712}(3635,\cdot)\)
\(\chi_{5712}(4211,\cdot)\)
\(\chi_{5712}(4379,\cdot)\)
\(\chi_{5712}(4715,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,1429,3809,3265,2689)\) → \((-1,-i,-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 5712 }(515, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(-1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) |
sage:chi.jacobi_sum(n)