Properties

Label 5712.4477
Modulus $5712$
Conductor $1904$
Order $48$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([0,36,0,32,45]))
 
Copy content pari:[g,chi] = znchar(Mod(4477,5712))
 

Basic properties

Modulus: \(5712\)
Conductor: \(1904\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1904}(669,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5712.kz

\(\chi_{5712}(37,\cdot)\) \(\chi_{5712}(109,\cdot)\) \(\chi_{5712}(277,\cdot)\) \(\chi_{5712}(709,\cdot)\) \(\chi_{5712}(877,\cdot)\) \(\chi_{5712}(949,\cdot)\) \(\chi_{5712}(1213,\cdot)\) \(\chi_{5712}(2221,\cdot)\) \(\chi_{5712}(2557,\cdot)\) \(\chi_{5712}(2725,\cdot)\) \(\chi_{5712}(3301,\cdot)\) \(\chi_{5712}(3397,\cdot)\) \(\chi_{5712}(3973,\cdot)\) \(\chi_{5712}(4141,\cdot)\) \(\chi_{5712}(4477,\cdot)\) \(\chi_{5712}(5485,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((2143,1429,3809,3265,2689)\) → \((1,-i,1,e\left(\frac{2}{3}\right),e\left(\frac{15}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5712 }(4477, a) \) \(-1\)\(1\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{47}{48}\right)\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{43}{48}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{5}{48}\right)\)\(e\left(\frac{1}{48}\right)\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5712 }(4477,a) \;\) at \(\;a = \) e.g. 2