Properties

Label 5616.779
Modulus $5616$
Conductor $5616$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5616, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,9,22,18]))
 
Copy content pari:[g,chi] = znchar(Mod(779,5616))
 

Basic properties

Modulus: \(5616\)
Conductor: \(5616\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5616.lm

\(\chi_{5616}(155,\cdot)\) \(\chi_{5616}(779,\cdot)\) \(\chi_{5616}(1091,\cdot)\) \(\chi_{5616}(1715,\cdot)\) \(\chi_{5616}(2027,\cdot)\) \(\chi_{5616}(2651,\cdot)\) \(\chi_{5616}(2963,\cdot)\) \(\chi_{5616}(3587,\cdot)\) \(\chi_{5616}(3899,\cdot)\) \(\chi_{5616}(4523,\cdot)\) \(\chi_{5616}(4835,\cdot)\) \(\chi_{5616}(5459,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((703,4213,2081,3889)\) → \((-1,i,e\left(\frac{11}{18}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 5616 }(779, a) \) \(1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5616 }(779,a) \;\) at \(\;a = \) e.g. 2