sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5616, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,28,24]))
pari:[g,chi] = znchar(Mod(373,5616))
Modulus: | \(5616\) | |
Conductor: | \(5616\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5616}(133,\cdot)\)
\(\chi_{5616}(373,\cdot)\)
\(\chi_{5616}(1069,\cdot)\)
\(\chi_{5616}(1309,\cdot)\)
\(\chi_{5616}(2005,\cdot)\)
\(\chi_{5616}(2245,\cdot)\)
\(\chi_{5616}(2941,\cdot)\)
\(\chi_{5616}(3181,\cdot)\)
\(\chi_{5616}(3877,\cdot)\)
\(\chi_{5616}(4117,\cdot)\)
\(\chi_{5616}(4813,\cdot)\)
\(\chi_{5616}(5053,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,4213,2081,3889)\) → \((1,i,e\left(\frac{7}{9}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 5616 }(373, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)