sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5616, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,34,3]))
pari:[g,chi] = znchar(Mod(1445,5616))
Modulus: | \(5616\) | |
Conductor: | \(5616\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5616}(605,\cdot)\)
\(\chi_{5616}(1397,\cdot)\)
\(\chi_{5616}(1445,\cdot)\)
\(\chi_{5616}(1805,\cdot)\)
\(\chi_{5616}(2477,\cdot)\)
\(\chi_{5616}(3269,\cdot)\)
\(\chi_{5616}(3317,\cdot)\)
\(\chi_{5616}(3677,\cdot)\)
\(\chi_{5616}(4349,\cdot)\)
\(\chi_{5616}(5141,\cdot)\)
\(\chi_{5616}(5189,\cdot)\)
\(\chi_{5616}(5549,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,4213,2081,3889)\) → \((1,i,e\left(\frac{17}{18}\right),e\left(\frac{1}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 5616 }(1445, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)