sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5328, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,30,16]))
pari:[g,chi] = znchar(Mod(4523,5328))
| Modulus: | \(5328\) | |
| Conductor: | \(5328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5328}(155,\cdot)\)
\(\chi_{5328}(275,\cdot)\)
\(\chi_{5328}(419,\cdot)\)
\(\chi_{5328}(515,\cdot)\)
\(\chi_{5328}(1859,\cdot)\)
\(\chi_{5328}(1883,\cdot)\)
\(\chi_{5328}(2819,\cdot)\)
\(\chi_{5328}(2939,\cdot)\)
\(\chi_{5328}(3083,\cdot)\)
\(\chi_{5328}(3179,\cdot)\)
\(\chi_{5328}(4523,\cdot)\)
\(\chi_{5328}(4547,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1999,1333,2369,1297)\) → \((-1,i,e\left(\frac{5}{6}\right),e\left(\frac{4}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 5328 }(4523, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)