Properties

Label 5328.4165
Modulus $5328$
Conductor $5328$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([0,9,24,22]))
 
Copy content pari:[g,chi] = znchar(Mod(4165,5328))
 

Basic properties

Modulus: \(5328\)
Conductor: \(5328\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5328.lu

\(\chi_{5328}(373,\cdot)\) \(\chi_{5328}(733,\cdot)\) \(\chi_{5328}(1357,\cdot)\) \(\chi_{5328}(1501,\cdot)\) \(\chi_{5328}(1669,\cdot)\) \(\chi_{5328}(2581,\cdot)\) \(\chi_{5328}(3037,\cdot)\) \(\chi_{5328}(3397,\cdot)\) \(\chi_{5328}(4021,\cdot)\) \(\chi_{5328}(4165,\cdot)\) \(\chi_{5328}(4333,\cdot)\) \(\chi_{5328}(5245,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((1999,1333,2369,1297)\) → \((1,i,e\left(\frac{2}{3}\right),e\left(\frac{11}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 5328 }(4165, a) \) \(1\)\(1\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(i\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{5}{36}\right)\)\(1\)\(e\left(\frac{5}{18}\right)\)\(i\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5328 }(4165,a) \;\) at \(\;a = \) e.g. 2