sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5328, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,30,35]))
pari:[g,chi] = znchar(Mod(2165,5328))
Modulus: | \(5328\) | |
Conductor: | \(5328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5328}(5,\cdot)\)
\(\chi_{5328}(365,\cdot)\)
\(\chi_{5328}(653,\cdot)\)
\(\chi_{5328}(2165,\cdot)\)
\(\chi_{5328}(2333,\cdot)\)
\(\chi_{5328}(3125,\cdot)\)
\(\chi_{5328}(3197,\cdot)\)
\(\chi_{5328}(3533,\cdot)\)
\(\chi_{5328}(4277,\cdot)\)
\(\chi_{5328}(4349,\cdot)\)
\(\chi_{5328}(5045,\cdot)\)
\(\chi_{5328}(5141,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1999,1333,2369,1297)\) → \((1,i,e\left(\frac{5}{6}\right),e\left(\frac{35}{36}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 5328 }(2165, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(i\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(i\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)