sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5328, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,27,12,1]))
pari:[g,chi] = znchar(Mod(1741,5328))
| Modulus: | \(5328\) | |
| Conductor: | \(5328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5328}(61,\cdot)\)
\(\chi_{5328}(1573,\cdot)\)
\(\chi_{5328}(1741,\cdot)\)
\(\chi_{5328}(2533,\cdot)\)
\(\chi_{5328}(2605,\cdot)\)
\(\chi_{5328}(2941,\cdot)\)
\(\chi_{5328}(3685,\cdot)\)
\(\chi_{5328}(3757,\cdot)\)
\(\chi_{5328}(4453,\cdot)\)
\(\chi_{5328}(4549,\cdot)\)
\(\chi_{5328}(4741,\cdot)\)
\(\chi_{5328}(5101,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1999,1333,2369,1297)\) → \((1,-i,e\left(\frac{1}{3}\right),e\left(\frac{1}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 5328 }(1741, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)