Properties

Label 5200.jo
Modulus $5200$
Conductor $2600$
Order $60$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5200, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([0,30,27,55])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(137,5200)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5200\)
Conductor: \(2600\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2600.fm
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{5200}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{5200}(297,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{5200}(873,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{5200}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{5200}(1177,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{5200}(1337,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{5200}(1913,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{5200}(2073,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{5200}(2217,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{5200}(2377,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{5200}(2953,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{5200}(3113,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{5200}(3417,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{5200}(4153,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{5200}(4297,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{5200}(5033,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{15}\right)\)