sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,57,5]))
pari:[g,chi] = znchar(Mod(1913,5200))
\(\chi_{5200}(137,\cdot)\)
\(\chi_{5200}(297,\cdot)\)
\(\chi_{5200}(873,\cdot)\)
\(\chi_{5200}(1033,\cdot)\)
\(\chi_{5200}(1177,\cdot)\)
\(\chi_{5200}(1337,\cdot)\)
\(\chi_{5200}(1913,\cdot)\)
\(\chi_{5200}(2073,\cdot)\)
\(\chi_{5200}(2217,\cdot)\)
\(\chi_{5200}(2377,\cdot)\)
\(\chi_{5200}(2953,\cdot)\)
\(\chi_{5200}(3113,\cdot)\)
\(\chi_{5200}(3417,\cdot)\)
\(\chi_{5200}(4153,\cdot)\)
\(\chi_{5200}(4297,\cdot)\)
\(\chi_{5200}(5033,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((1,-1,e\left(\frac{19}{20}\right),e\left(\frac{1}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 5200 }(1913, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) |
sage:chi.jacobi_sum(n)