sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5200, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,15,17,15]))
pari:[g,chi] = znchar(Mod(2397,5200))
Modulus: | \(5200\) | |
Conductor: | \(5200\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5200}(317,\cdot)\)
\(\chi_{5200}(853,\cdot)\)
\(\chi_{5200}(2397,\cdot)\)
\(\chi_{5200}(2933,\cdot)\)
\(\chi_{5200}(3437,\cdot)\)
\(\chi_{5200}(3973,\cdot)\)
\(\chi_{5200}(4477,\cdot)\)
\(\chi_{5200}(5013,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,4577,1601)\) → \((1,-i,e\left(\frac{17}{20}\right),-i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 5200 }(2397, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) |
sage:chi.jacobi_sum(n)