L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.809 − 0.587i)27-s + (0.951 − 0.309i)29-s + (−0.951 − 0.309i)31-s + (0.309 − 0.951i)33-s + (−0.587 − 0.809i)37-s + (−0.587 − 0.809i)41-s + 43-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)3-s + 7-s + (−0.809 + 0.587i)9-s + (−0.809 − 0.587i)11-s + (−0.951 − 0.309i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (−0.587 + 0.809i)23-s + (−0.809 − 0.587i)27-s + (0.951 − 0.309i)29-s + (−0.951 − 0.309i)31-s + (0.309 − 0.951i)33-s + (−0.587 − 0.809i)37-s + (−0.587 − 0.809i)41-s + 43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.418703822 - 0.2279375589i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.418703822 - 0.2279375589i\) |
\(L(1)\) |
\(\approx\) |
\(1.058233582 + 0.2293523168i\) |
\(L(1)\) |
\(\approx\) |
\(1.058233582 + 0.2293523168i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.309 + 0.951i)T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
| 17 | \( 1 + (-0.951 - 0.309i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.587 + 0.809i)T \) |
| 29 | \( 1 + (0.951 - 0.309i)T \) |
| 31 | \( 1 + (-0.951 - 0.309i)T \) |
| 37 | \( 1 + (-0.587 - 0.809i)T \) |
| 41 | \( 1 + (-0.587 - 0.809i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (0.587 - 0.809i)T \) |
| 67 | \( 1 + (0.951 + 0.309i)T \) |
| 71 | \( 1 + (-0.951 + 0.309i)T \) |
| 73 | \( 1 + (0.809 + 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.951 - 0.309i)T \) |
| 89 | \( 1 + (0.587 - 0.809i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.10703756157394962841898848431, −17.55492658010661751949941719679, −16.96038283315122467362607076704, −15.87026752727981974637345577195, −15.25978327201811757447026076593, −14.61846623347374078860754329907, −14.00502295135281798530367453146, −13.33614920250317415718039856489, −12.693588042365246141425351879645, −12.1629912221611565258265028918, −11.287456718757911713197360364812, −10.81566832657976904187862997814, −9.97466230222316642719167768512, −8.87893040333360785438452511979, −8.508546028742410020164496258306, −7.81858411856325212772720547143, −7.128240332228921153379301433897, −6.55255538627307501664498141653, −5.68152153353442585098611826800, −4.80244428354952291853041603318, −4.303581610082744749823662444164, −3.04488635925850558817240252905, −2.35584548953199691982052010583, −1.80900152273269454039910549955, −0.87070231409612750937292375824,
0.3956152068726342668657053751, 1.92286549238358805504979000415, 2.314618349658812257569285404295, 3.475116118186903814379266218244, 3.95517661003707297040551785558, 4.859052972875753742002725196741, 5.3752203724866254322307399346, 6.02699571350170370543996952799, 7.203970969747568524701391295192, 7.958204674195667951389386908483, 8.4958564836661035720863290368, 9.03532070526146192315274673102, 10.04998758196154864759230651667, 10.44627897452479576197413767486, 11.286701593231306845925116537188, 11.57090659035702574655940783093, 12.66866590202896276558072147731, 13.47410422118939565346899812383, 14.18554252117194885674791333363, 14.49681579645248826362364058129, 15.50404396527098643663942612632, 15.789856493171042389168782853973, 16.47491329198529829033844250292, 17.36368628092796213824595381212, 17.76710085181454193887013583639