Properties

Label 5184.709
Modulus $5184$
Conductor $5184$
Order $432$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5184, base_ring=CyclotomicField(432)) M = H._module chi = DirichletCharacter(H, M([0,27,416]))
 
Copy content pari:[g,chi] = znchar(Mod(709,5184))
 

Basic properties

Modulus: \(5184\)
Conductor: \(5184\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(432\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5184.cy

\(\chi_{5184}(13,\cdot)\) \(\chi_{5184}(61,\cdot)\) \(\chi_{5184}(85,\cdot)\) \(\chi_{5184}(133,\cdot)\) \(\chi_{5184}(157,\cdot)\) \(\chi_{5184}(205,\cdot)\) \(\chi_{5184}(229,\cdot)\) \(\chi_{5184}(277,\cdot)\) \(\chi_{5184}(301,\cdot)\) \(\chi_{5184}(349,\cdot)\) \(\chi_{5184}(373,\cdot)\) \(\chi_{5184}(421,\cdot)\) \(\chi_{5184}(445,\cdot)\) \(\chi_{5184}(493,\cdot)\) \(\chi_{5184}(517,\cdot)\) \(\chi_{5184}(565,\cdot)\) \(\chi_{5184}(589,\cdot)\) \(\chi_{5184}(637,\cdot)\) \(\chi_{5184}(661,\cdot)\) \(\chi_{5184}(709,\cdot)\) \(\chi_{5184}(733,\cdot)\) \(\chi_{5184}(781,\cdot)\) \(\chi_{5184}(805,\cdot)\) \(\chi_{5184}(853,\cdot)\) \(\chi_{5184}(877,\cdot)\) \(\chi_{5184}(925,\cdot)\) \(\chi_{5184}(949,\cdot)\) \(\chi_{5184}(997,\cdot)\) \(\chi_{5184}(1021,\cdot)\) \(\chi_{5184}(1069,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{432})$
Fixed field: Number field defined by a degree 432 polynomial (not computed)

Values on generators

\((2431,325,1217)\) → \((1,e\left(\frac{1}{16}\right),e\left(\frac{26}{27}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 5184 }(709, a) \) \(1\)\(1\)\(e\left(\frac{91}{432}\right)\)\(e\left(\frac{7}{216}\right)\)\(e\left(\frac{359}{432}\right)\)\(e\left(\frac{277}{432}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{95}{144}\right)\)\(e\left(\frac{101}{216}\right)\)\(e\left(\frac{91}{216}\right)\)\(e\left(\frac{137}{432}\right)\)\(e\left(\frac{41}{54}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5184 }(709,a) \;\) at \(\;a = \) e.g. 2