sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(432))
M = H._module
chi = DirichletCharacter(H, M([0,27,416]))
pari:[g,chi] = znchar(Mod(709,5184))
| Modulus: | \(5184\) | |
| Conductor: | \(5184\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(432\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5184}(13,\cdot)\)
\(\chi_{5184}(61,\cdot)\)
\(\chi_{5184}(85,\cdot)\)
\(\chi_{5184}(133,\cdot)\)
\(\chi_{5184}(157,\cdot)\)
\(\chi_{5184}(205,\cdot)\)
\(\chi_{5184}(229,\cdot)\)
\(\chi_{5184}(277,\cdot)\)
\(\chi_{5184}(301,\cdot)\)
\(\chi_{5184}(349,\cdot)\)
\(\chi_{5184}(373,\cdot)\)
\(\chi_{5184}(421,\cdot)\)
\(\chi_{5184}(445,\cdot)\)
\(\chi_{5184}(493,\cdot)\)
\(\chi_{5184}(517,\cdot)\)
\(\chi_{5184}(565,\cdot)\)
\(\chi_{5184}(589,\cdot)\)
\(\chi_{5184}(637,\cdot)\)
\(\chi_{5184}(661,\cdot)\)
\(\chi_{5184}(709,\cdot)\)
\(\chi_{5184}(733,\cdot)\)
\(\chi_{5184}(781,\cdot)\)
\(\chi_{5184}(805,\cdot)\)
\(\chi_{5184}(853,\cdot)\)
\(\chi_{5184}(877,\cdot)\)
\(\chi_{5184}(925,\cdot)\)
\(\chi_{5184}(949,\cdot)\)
\(\chi_{5184}(997,\cdot)\)
\(\chi_{5184}(1021,\cdot)\)
\(\chi_{5184}(1069,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2431,325,1217)\) → \((1,e\left(\frac{1}{16}\right),e\left(\frac{26}{27}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
| \( \chi_{ 5184 }(709, a) \) |
\(1\) | \(1\) | \(e\left(\frac{91}{432}\right)\) | \(e\left(\frac{7}{216}\right)\) | \(e\left(\frac{359}{432}\right)\) | \(e\left(\frac{277}{432}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{101}{216}\right)\) | \(e\left(\frac{91}{216}\right)\) | \(e\left(\frac{137}{432}\right)\) | \(e\left(\frac{41}{54}\right)\) |
sage:chi.jacobi_sum(n)