| L(s) = 1 | + (0.244 + 0.969i)5-s + (0.979 + 0.202i)7-s + (0.487 − 0.873i)11-s + (−0.631 − 0.775i)13-s + (−0.984 − 0.173i)17-s + (−0.537 − 0.843i)19-s + (−0.979 + 0.202i)23-s + (−0.880 + 0.474i)25-s + (−0.409 + 0.912i)29-s + (0.0581 − 0.998i)31-s + (0.0436 + 0.999i)35-s + (0.999 + 0.0436i)37-s + (0.851 − 0.524i)41-s + (0.999 − 0.0145i)43-s + (−0.998 + 0.0581i)47-s + ⋯ |
| L(s) = 1 | + (0.244 + 0.969i)5-s + (0.979 + 0.202i)7-s + (0.487 − 0.873i)11-s + (−0.631 − 0.775i)13-s + (−0.984 − 0.173i)17-s + (−0.537 − 0.843i)19-s + (−0.979 + 0.202i)23-s + (−0.880 + 0.474i)25-s + (−0.409 + 0.912i)29-s + (0.0581 − 0.998i)31-s + (0.0436 + 0.999i)35-s + (0.999 + 0.0436i)37-s + (0.851 − 0.524i)41-s + (0.999 − 0.0145i)43-s + (−0.998 + 0.0581i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.556 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.556 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3391049060 - 0.6353465025i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3391049060 - 0.6353465025i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9923051317 + 0.001179081561i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9923051317 + 0.001179081561i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.244 + 0.969i)T \) |
| 7 | \( 1 + (0.979 + 0.202i)T \) |
| 11 | \( 1 + (0.487 - 0.873i)T \) |
| 13 | \( 1 + (-0.631 - 0.775i)T \) |
| 17 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.537 - 0.843i)T \) |
| 23 | \( 1 + (-0.979 + 0.202i)T \) |
| 29 | \( 1 + (-0.409 + 0.912i)T \) |
| 31 | \( 1 + (0.0581 - 0.998i)T \) |
| 37 | \( 1 + (0.999 + 0.0436i)T \) |
| 41 | \( 1 + (0.851 - 0.524i)T \) |
| 43 | \( 1 + (0.999 - 0.0145i)T \) |
| 47 | \( 1 + (-0.998 + 0.0581i)T \) |
| 53 | \( 1 + (-0.608 - 0.793i)T \) |
| 59 | \( 1 + (-0.962 - 0.272i)T \) |
| 61 | \( 1 + (-0.0726 + 0.997i)T \) |
| 67 | \( 1 + (-0.934 - 0.355i)T \) |
| 71 | \( 1 + (-0.0871 - 0.996i)T \) |
| 73 | \( 1 + (-0.0871 + 0.996i)T \) |
| 79 | \( 1 + (0.230 + 0.973i)T \) |
| 83 | \( 1 + (-0.810 + 0.585i)T \) |
| 89 | \( 1 + (0.996 + 0.0871i)T \) |
| 97 | \( 1 + (-0.597 + 0.802i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.87962077733645854974535533167, −17.59735784691301780686984408667, −16.94425415944854065152435558853, −16.36773707774372781563752888114, −15.59740289499475352312041123150, −14.7122907434729840077106860934, −14.34492761880903792837343845628, −13.59091851993852135800632520369, −12.78646020511950215527180402264, −12.18877205355608001406467737589, −11.67918410201853116531639526782, −10.86714142770318055854487121910, −10.03170139198407645990261026677, −9.37347784434778640733323191709, −8.8152301130574562078027651497, −7.95976252262308848798201206277, −7.529460722799220963945647276538, −6.451083743539784726535366394903, −5.90791719681235495424677178700, −4.787491538015351192482963781038, −4.45729438436932875872862015395, −3.97633061657527641689398996789, −2.41382923084762808293415640687, −1.84495238672593961435039278842, −1.27193676397366085217296638555,
0.170906197501636873797481296546, 1.43490693642384267018193640098, 2.36994605077011683578443151382, 2.787692956612206935041144741226, 3.84915803732023906091408808520, 4.52515388756521536177005717464, 5.46673645714190005663956625795, 6.05720396724224801916590006287, 6.78135820198538071597026450073, 7.60134906701626349163439876930, 8.120640096437535394190031840680, 9.02117625571572650567381335169, 9.60091057962404141552442901818, 10.58339636864829891542246067184, 11.11318406339178627513769398989, 11.434317486602051625111945120384, 12.38159252128371669550165655489, 13.23134060495602423646665048094, 13.87134519349517948232772131613, 14.504001725654602094627226600523, 15.01316501663109523742670356022, 15.580045022623255414423210679405, 16.480445507859196414408061770753, 17.31260082774930069002783303275, 17.85622765813528152087543057423