Properties

Label 5160.gr
Modulus $5160$
Conductor $129$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5160, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([0,0,21,0,25])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(521,5160)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5160\)
Conductor: \(129\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 129.n
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: \(\Q(\zeta_{129})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{5160}(521,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(761,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{5160}(1001,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(1121,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(1481,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{5160}(1961,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(2441,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{5160}(3641,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{5160}(3761,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{5160}(4361,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{5160}(4721,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{14}\right)\)