from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(516, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,40]))
pari: [g,chi] = znchar(Mod(239,516))
Basic properties
Modulus: | \(516\) | |
Conductor: | \(516\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 516.bb
\(\chi_{516}(23,\cdot)\) \(\chi_{516}(83,\cdot)\) \(\chi_{516}(95,\cdot)\) \(\chi_{516}(143,\cdot)\) \(\chi_{516}(167,\cdot)\) \(\chi_{516}(203,\cdot)\) \(\chi_{516}(239,\cdot)\) \(\chi_{516}(275,\cdot)\) \(\chi_{516}(311,\cdot)\) \(\chi_{516}(359,\cdot)\) \(\chi_{516}(443,\cdot)\) \(\chi_{516}(455,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((259,173,433)\) → \((-1,-1,e\left(\frac{20}{21}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 516 }(239, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{37}{42}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)