sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(516, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,20]))
pari:[g,chi] = znchar(Mod(143,516))
Modulus: | \(516\) | |
Conductor: | \(516\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{516}(23,\cdot)\)
\(\chi_{516}(83,\cdot)\)
\(\chi_{516}(95,\cdot)\)
\(\chi_{516}(143,\cdot)\)
\(\chi_{516}(167,\cdot)\)
\(\chi_{516}(203,\cdot)\)
\(\chi_{516}(239,\cdot)\)
\(\chi_{516}(275,\cdot)\)
\(\chi_{516}(311,\cdot)\)
\(\chi_{516}(359,\cdot)\)
\(\chi_{516}(443,\cdot)\)
\(\chi_{516}(455,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((259,173,433)\) → \((-1,-1,e\left(\frac{10}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 516 }(143, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{29}{42}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)