sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(513, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([5,15]))
pari:[g,chi] = znchar(Mod(221,513))
| Modulus: | \(513\) | |
| Conductor: | \(513\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(18\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{513}(50,\cdot)\)
\(\chi_{513}(65,\cdot)\)
\(\chi_{513}(221,\cdot)\)
\(\chi_{513}(236,\cdot)\)
\(\chi_{513}(392,\cdot)\)
\(\chi_{513}(407,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,325)\) → \((e\left(\frac{5}{18}\right),e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 513 }(221, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)