| L(s) = 1 | + (0.766 + 0.642i)2-s + (0.173 + 0.984i)4-s + (−0.173 − 0.984i)5-s + (−0.939 + 0.342i)7-s + (−0.5 + 0.866i)8-s + (0.5 − 0.866i)10-s + (−0.766 − 0.642i)11-s + (−0.766 + 0.642i)13-s + (−0.939 − 0.342i)14-s + (−0.939 + 0.342i)16-s − 17-s + (0.939 − 0.342i)20-s + (−0.173 − 0.984i)22-s + (−0.173 − 0.984i)23-s + (−0.939 + 0.342i)25-s − 26-s + ⋯ |
| L(s) = 1 | + (0.766 + 0.642i)2-s + (0.173 + 0.984i)4-s + (−0.173 − 0.984i)5-s + (−0.939 + 0.342i)7-s + (−0.5 + 0.866i)8-s + (0.5 − 0.866i)10-s + (−0.766 − 0.642i)11-s + (−0.766 + 0.642i)13-s + (−0.939 − 0.342i)14-s + (−0.939 + 0.342i)16-s − 17-s + (0.939 − 0.342i)20-s + (−0.173 − 0.984i)22-s + (−0.173 − 0.984i)23-s + (−0.939 + 0.342i)25-s − 26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.790 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.790 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.03397648570 + 0.09945091274i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.03397648570 + 0.09945091274i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8657093968 + 0.2982191750i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8657093968 + 0.2982191750i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.766 + 0.642i)T \) |
| 5 | \( 1 + (-0.173 - 0.984i)T \) |
| 7 | \( 1 + (-0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.766 - 0.642i)T \) |
| 13 | \( 1 + (-0.766 + 0.642i)T \) |
| 17 | \( 1 - T \) |
| 23 | \( 1 + (-0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + (-0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.766 - 0.642i)T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.766 - 0.642i)T \) |
| 83 | \( 1 + (-0.173 + 0.984i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.939 - 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.96468528610043434487336629495, −22.25130918122226181778739519019, −21.6669901223529138844301518015, −20.41732232868620237512922502828, −19.81887002525408842947399013435, −19.06819355939564041797700564978, −18.2277572732837023754462506605, −17.273480531645016775807925731027, −15.69566585357753398402120822729, −15.38985961215844948239223044287, −14.42884008949112140212358810433, −13.37174839465193887231992062321, −12.88509476790551441489445226594, −11.784636080126297530513806524688, −10.910526337821452048659813621021, −10.06544567881507322289405136636, −9.56566799304091453400103293625, −7.71881332275682101040520856461, −6.88154556581052895249059239236, −6.01247475079660467472748185449, −4.87396333412696348316247303530, −3.76527870623892153106914420258, −2.90664932411696907545941035237, −2.0906782451949653106353329736, −0.03842245184610764837646265181,
2.21544558053684633168615399237, 3.2772808991453868707067212695, 4.447284393893914075009858990378, 5.174342737356140237676338199285, 6.20451804346026706538609625656, 7.03827403172578166913912352631, 8.28693961708604251326941158708, 8.85083437047019818789079794951, 9.99448371010822616274212726430, 11.47511257411732214582547578886, 12.21631132657090944024968643703, 13.12517592173175178543087250166, 13.49331493157638875109902407811, 14.814435510621978781041361861536, 15.63556451983170827010765589732, 16.408996804578386423647047534507, 16.805210311902540227460913508314, 18.012986747413164687586121450803, 19.10811850507518027409854997198, 20.05355841788766531858487206231, 20.87672966418182471473413452162, 21.77646723569906320250466742244, 22.37347384838514478206610895193, 23.39614757175691992861002664708, 24.19438704208960882308299314512