Properties

Label 508288.73
Modulus $508288$
Conductor $254144$
Order $13680$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(13680)) M = H._module chi = DirichletCharacter(H, M([0,9405,9576,4480]))
 
Copy content pari:[g,chi] = znchar(Mod(73,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(254144\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(13680\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{254144}(111261,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.vt

\(\chi_{508288}(73,\cdot)\) \(\chi_{508288}(233,\cdot)\) \(\chi_{508288}(633,\cdot)\) \(\chi_{508288}(745,\cdot)\) \(\chi_{508288}(777,\cdot)\) \(\chi_{508288}(921,\cdot)\) \(\chi_{508288}(937,\cdot)\) \(\chi_{508288}(985,\cdot)\) \(\chi_{508288}(1289,\cdot)\) \(\chi_{508288}(1449,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{13680})$
Fixed field: Number field defined by a degree 13680 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,e\left(\frac{11}{16}\right),e\left(\frac{7}{10}\right),e\left(\frac{56}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(73, a) \) \(-1\)\(1\)\(e\left(\frac{2503}{13680}\right)\)\(e\left(\frac{6349}{13680}\right)\)\(e\left(\frac{2047}{2280}\right)\)\(e\left(\frac{2503}{6840}\right)\)\(e\left(\frac{10331}{13680}\right)\)\(e\left(\frac{2213}{3420}\right)\)\(e\left(\frac{1921}{3420}\right)\)\(e\left(\frac{221}{2736}\right)\)\(e\left(\frac{599}{1368}\right)\)\(e\left(\frac{6349}{6840}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(73,a) \;\) at \(\;a = \) e.g. 2