sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(13680))
M = H._module
chi = DirichletCharacter(H, M([0,9405,9576,4480]))
pari:[g,chi] = znchar(Mod(73,508288))
\(\chi_{508288}(73,\cdot)\)
\(\chi_{508288}(233,\cdot)\)
\(\chi_{508288}(633,\cdot)\)
\(\chi_{508288}(745,\cdot)\)
\(\chi_{508288}(777,\cdot)\)
\(\chi_{508288}(921,\cdot)\)
\(\chi_{508288}(937,\cdot)\)
\(\chi_{508288}(985,\cdot)\)
\(\chi_{508288}(1289,\cdot)\)
\(\chi_{508288}(1449,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{11}{16}\right),e\left(\frac{7}{10}\right),e\left(\frac{56}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(73, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2503}{13680}\right)\) | \(e\left(\frac{6349}{13680}\right)\) | \(e\left(\frac{2047}{2280}\right)\) | \(e\left(\frac{2503}{6840}\right)\) | \(e\left(\frac{10331}{13680}\right)\) | \(e\left(\frac{2213}{3420}\right)\) | \(e\left(\frac{1921}{3420}\right)\) | \(e\left(\frac{221}{2736}\right)\) | \(e\left(\frac{599}{1368}\right)\) | \(e\left(\frac{6349}{6840}\right)\) |
sage:chi.jacobi_sum(n)