sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(3040))
M = H._module
chi = DirichletCharacter(H, M([0,1235,1824,2000]))
pari:[g,chi] = znchar(Mod(8853,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(3040\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(37,\cdot)\)
\(\chi_{508288}(493,\cdot)\)
\(\chi_{508288}(797,\cdot)\)
\(\chi_{508288}(949,\cdot)\)
\(\chi_{508288}(1709,\cdot)\)
\(\chi_{508288}(2469,\cdot)\)
\(\chi_{508288}(2621,\cdot)\)
\(\chi_{508288}(3381,\cdot)\)
\(\chi_{508288}(3837,\cdot)\)
\(\chi_{508288}(4141,\cdot)\)
\(\chi_{508288}(4293,\cdot)\)
\(\chi_{508288}(5509,\cdot)\)
\(\chi_{508288}(5813,\cdot)\)
\(\chi_{508288}(5965,\cdot)\)
\(\chi_{508288}(6725,\cdot)\)
\(\chi_{508288}(7181,\cdot)\)
\(\chi_{508288}(7485,\cdot)\)
\(\chi_{508288}(7637,\cdot)\)
\(\chi_{508288}(8397,\cdot)\)
\(\chi_{508288}(8853,\cdot)\)
\(\chi_{508288}(9157,\cdot)\)
\(\chi_{508288}(9309,\cdot)\)
\(\chi_{508288}(10069,\cdot)\)
\(\chi_{508288}(10525,\cdot)\)
\(\chi_{508288}(10981,\cdot)\)
\(\chi_{508288}(11741,\cdot)\)
\(\chi_{508288}(12197,\cdot)\)
\(\chi_{508288}(12501,\cdot)\)
\(\chi_{508288}(12653,\cdot)\)
\(\chi_{508288}(13413,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{13}{32}\right),e\left(\frac{3}{5}\right),e\left(\frac{25}{38}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(8853, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1417}{3040}\right)\) | \(e\left(\frac{1331}{3040}\right)\) | \(e\left(\frac{1439}{1520}\right)\) | \(e\left(\frac{1417}{1520}\right)\) | \(e\left(\frac{429}{3040}\right)\) | \(e\left(\frac{687}{760}\right)\) | \(e\left(\frac{349}{760}\right)\) | \(e\left(\frac{251}{608}\right)\) | \(e\left(\frac{225}{304}\right)\) | \(e\left(\frac{1331}{1520}\right)\) |
sage:chi.jacobi_sum(n)