Properties

Label 508288.3381
Modulus $508288$
Conductor $508288$
Order $3040$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(3040)) M = H._module chi = DirichletCharacter(H, M([0,475,608,2160]))
 
Copy content pari:[g,chi] = znchar(Mod(3381,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(508288\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(3040\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.tt

\(\chi_{508288}(37,\cdot)\) \(\chi_{508288}(493,\cdot)\) \(\chi_{508288}(797,\cdot)\) \(\chi_{508288}(949,\cdot)\) \(\chi_{508288}(1709,\cdot)\) \(\chi_{508288}(2469,\cdot)\) \(\chi_{508288}(2621,\cdot)\) \(\chi_{508288}(3381,\cdot)\) \(\chi_{508288}(3837,\cdot)\) \(\chi_{508288}(4141,\cdot)\) \(\chi_{508288}(4293,\cdot)\) \(\chi_{508288}(5509,\cdot)\) \(\chi_{508288}(5813,\cdot)\) \(\chi_{508288}(5965,\cdot)\) \(\chi_{508288}(6725,\cdot)\) \(\chi_{508288}(7181,\cdot)\) \(\chi_{508288}(7485,\cdot)\) \(\chi_{508288}(7637,\cdot)\) \(\chi_{508288}(8397,\cdot)\) \(\chi_{508288}(8853,\cdot)\) \(\chi_{508288}(9157,\cdot)\) \(\chi_{508288}(9309,\cdot)\) \(\chi_{508288}(10069,\cdot)\) \(\chi_{508288}(10525,\cdot)\) \(\chi_{508288}(10981,\cdot)\) \(\chi_{508288}(11741,\cdot)\) \(\chi_{508288}(12197,\cdot)\) \(\chi_{508288}(12501,\cdot)\) \(\chi_{508288}(12653,\cdot)\) \(\chi_{508288}(13413,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{3040})$
Fixed field: Number field defined by a degree 3040 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,e\left(\frac{5}{32}\right),e\left(\frac{1}{5}\right),e\left(\frac{27}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(3381, a) \) \(-1\)\(1\)\(e\left(\frac{2529}{3040}\right)\)\(e\left(\frac{2427}{3040}\right)\)\(e\left(\frac{823}{1520}\right)\)\(e\left(\frac{1009}{1520}\right)\)\(e\left(\frac{933}{3040}\right)\)\(e\left(\frac{479}{760}\right)\)\(e\left(\frac{573}{760}\right)\)\(e\left(\frac{227}{608}\right)\)\(e\left(\frac{281}{304}\right)\)\(e\left(\frac{907}{1520}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(3381,a) \;\) at \(\;a = \) e.g. 2