Properties

Label 508288.21
Modulus $508288$
Conductor $508288$
Order $5472$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(508288, base_ring=CyclotomicField(5472)) M = H._module chi = DirichletCharacter(H, M([0,2223,2736,4624]))
 
Copy content pari:[g,chi] = znchar(Mod(21,508288))
 

Basic properties

Modulus: \(508288\)
Conductor: \(508288\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(5472\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 508288.ut

\(\chi_{508288}(21,\cdot)\) \(\chi_{508288}(109,\cdot)\) \(\chi_{508288}(637,\cdot)\) \(\chi_{508288}(725,\cdot)\) \(\chi_{508288}(813,\cdot)\) \(\chi_{508288}(1077,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{5472})$
Fixed field: Number field defined by a degree 5472 polynomial (not computed)

Values on generators

\((166783,174725,323457,14081)\) → \((1,e\left(\frac{13}{32}\right),-1,e\left(\frac{289}{342}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 508288 }(21, a) \) \(1\)\(1\)\(e\left(\frac{3709}{5472}\right)\)\(e\left(\frac{2479}{5472}\right)\)\(e\left(\frac{289}{912}\right)\)\(e\left(\frac{973}{2736}\right)\)\(e\left(\frac{3329}{5472}\right)\)\(e\left(\frac{179}{1368}\right)\)\(e\left(\frac{1165}{1368}\right)\)\(e\left(\frac{5443}{5472}\right)\)\(e\left(\frac{169}{2736}\right)\)\(e\left(\frac{2479}{2736}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 508288 }(21,a) \;\) at \(\;a = \) e.g. 2