sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(508288, base_ring=CyclotomicField(5472))
M = H._module
chi = DirichletCharacter(H, M([0,3933,2736,4144]))
pari:[g,chi] = znchar(Mod(109,508288))
| Modulus: | \(508288\) | |
| Conductor: | \(508288\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(5472\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{508288}(21,\cdot)\)
\(\chi_{508288}(109,\cdot)\)
\(\chi_{508288}(637,\cdot)\)
\(\chi_{508288}(725,\cdot)\)
\(\chi_{508288}(813,\cdot)\)
\(\chi_{508288}(1077,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((166783,174725,323457,14081)\) → \((1,e\left(\frac{23}{32}\right),-1,e\left(\frac{259}{342}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 508288 }(109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2311}{5472}\right)\) | \(e\left(\frac{2269}{5472}\right)\) | \(e\left(\frac{259}{912}\right)\) | \(e\left(\frac{2311}{2736}\right)\) | \(e\left(\frac{2387}{5472}\right)\) | \(e\left(\frac{1145}{1368}\right)\) | \(e\left(\frac{1063}{1368}\right)\) | \(e\left(\frac{3865}{5472}\right)\) | \(e\left(\frac{1723}{2736}\right)\) | \(e\left(\frac{2269}{2736}\right)\) |
sage:chi.jacobi_sum(n)