sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,1]))
pari:[g,chi] = znchar(Mod(418,507))
\(\chi_{507}(19,\cdot)\)
\(\chi_{507}(319,\cdot)\)
\(\chi_{507}(418,\cdot)\)
\(\chi_{507}(427,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((170,340)\) → \((1,e\left(\frac{1}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 507 }(418, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)