sage: H = DirichletGroup(507)
pari: g = idealstar(,507,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 312 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{156}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{507}(170,\cdot)$, $\chi_{507}(340,\cdot)$ |
First 32 of 312 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{507}(1,\cdot)\) | 507.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{507}(2,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) |
\(\chi_{507}(4,\cdot)\) | 507.t | 78 | no | \(1\) | \(1\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) |
\(\chi_{507}(5,\cdot)\) | 507.s | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{507}(7,\cdot)\) | 507.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) |
\(\chi_{507}(8,\cdot)\) | 507.s | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{507}(10,\cdot)\) | 507.t | 78 | no | \(1\) | \(1\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) |
\(\chi_{507}(11,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) |
\(\chi_{507}(14,\cdot)\) | 507.o | 26 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{507}(16,\cdot)\) | 507.q | 39 | no | \(1\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{29}{39}\right)\) |
\(\chi_{507}(17,\cdot)\) | 507.v | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) |
\(\chi_{507}(19,\cdot)\) | 507.l | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{507}(20,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{85}{156}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) |
\(\chi_{507}(22,\cdot)\) | 507.e | 3 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{507}(23,\cdot)\) | 507.h | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{507}(25,\cdot)\) | 507.p | 26 | no | \(1\) | \(1\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{507}(28,\cdot)\) | 507.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{119}{156}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{1}{78}\right)\) |
\(\chi_{507}(29,\cdot)\) | 507.u | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) |
\(\chi_{507}(31,\cdot)\) | 507.r | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{507}(32,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) |
\(\chi_{507}(34,\cdot)\) | 507.r | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{507}(35,\cdot)\) | 507.u | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) |
\(\chi_{507}(37,\cdot)\) | 507.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{25}{78}\right)\) |
\(\chi_{507}(38,\cdot)\) | 507.n | 26 | yes | \(-1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) |
\(\chi_{507}(40,\cdot)\) | 507.m | 13 | no | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{507}(41,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{2}{39}\right)\) |
\(\chi_{507}(43,\cdot)\) | 507.t | 78 | no | \(1\) | \(1\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) |
\(\chi_{507}(44,\cdot)\) | 507.s | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) |
\(\chi_{507}(46,\cdot)\) | 507.w | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{133}{156}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{77}{156}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) |
\(\chi_{507}(47,\cdot)\) | 507.s | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{507}(49,\cdot)\) | 507.t | 78 | no | \(1\) | \(1\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) |
\(\chi_{507}(50,\cdot)\) | 507.x | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) |