![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,17]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,17]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(266,507))
        pari:[g,chi] = znchar(Mod(266,507))
         
     
    
  
   | Modulus: | \(507\) |  | 
   | Conductor: | \(507\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(156\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{507}(2,\cdot)\)
  \(\chi_{507}(11,\cdot)\)
  \(\chi_{507}(20,\cdot)\)
  \(\chi_{507}(32,\cdot)\)
  \(\chi_{507}(41,\cdot)\)
  \(\chi_{507}(50,\cdot)\)
  \(\chi_{507}(59,\cdot)\)
  \(\chi_{507}(71,\cdot)\)
  \(\chi_{507}(98,\cdot)\)
  \(\chi_{507}(110,\cdot)\)
  \(\chi_{507}(119,\cdot)\)
  \(\chi_{507}(128,\cdot)\)
  \(\chi_{507}(137,\cdot)\)
  \(\chi_{507}(149,\cdot)\)
  \(\chi_{507}(158,\cdot)\)
  \(\chi_{507}(167,\cdot)\)
  \(\chi_{507}(176,\cdot)\)
  \(\chi_{507}(197,\cdot)\)
  \(\chi_{507}(206,\cdot)\)
  \(\chi_{507}(215,\cdot)\)
  \(\chi_{507}(227,\cdot)\)
  \(\chi_{507}(236,\cdot)\)
  \(\chi_{507}(245,\cdot)\)
  \(\chi_{507}(254,\cdot)\)
  \(\chi_{507}(266,\cdot)\)
  \(\chi_{507}(275,\cdot)\)
  \(\chi_{507}(284,\cdot)\)
  \(\chi_{507}(293,\cdot)\)
  \(\chi_{507}(305,\cdot)\)
  \(\chi_{507}(314,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((170,340)\) → \((-1,e\left(\frac{17}{156}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 507 }(266, a) \) | \(1\) | \(1\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{103}{156}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)