sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,14]))
pari:[g,chi] = znchar(Mod(443,507))
Modulus: | \(507\) | |
Conductor: | \(507\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(26\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{507}(14,\cdot)\)
\(\chi_{507}(53,\cdot)\)
\(\chi_{507}(92,\cdot)\)
\(\chi_{507}(131,\cdot)\)
\(\chi_{507}(209,\cdot)\)
\(\chi_{507}(248,\cdot)\)
\(\chi_{507}(287,\cdot)\)
\(\chi_{507}(326,\cdot)\)
\(\chi_{507}(365,\cdot)\)
\(\chi_{507}(404,\cdot)\)
\(\chi_{507}(443,\cdot)\)
\(\chi_{507}(482,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((170,340)\) → \((-1,e\left(\frac{7}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 507 }(443, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)