Properties

Label 507.o
Modulus $507$
Conductor $507$
Order $26$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(507, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([13,18])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(14,507)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(507\)
Conductor: \(507\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.0.469739652406953148168948870108145354763666849944084892337683.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{507}(14,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{507}(53,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{507}(92,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{507}(131,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{507}(209,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{507}(248,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{507}(287,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{507}(326,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{507}(365,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{507}(404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{507}(443,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{507}(482,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{9}{26}\right)\)