Properties

Label 50423.g
Modulus $50423$
Conductor $50423$
Order $25211$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(50423, base_ring=CyclotomicField(50422)) M = H._module chi = DirichletCharacter(H, M([36814])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2,50423)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(50423\)
Conductor: \(50423\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(25211\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{25211})$
Fixed field: Number field defined by a degree 25211 polynomial (not computed)

First 31 of 23712 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{50423}(2,\cdot)\) \(1\) \(1\) \(e\left(\frac{14040}{25211}\right)\) \(e\left(\frac{14293}{25211}\right)\) \(e\left(\frac{2869}{25211}\right)\) \(e\left(\frac{18407}{25211}\right)\) \(e\left(\frac{3122}{25211}\right)\) \(e\left(\frac{15076}{25211}\right)\) \(e\left(\frac{16909}{25211}\right)\) \(e\left(\frac{3375}{25211}\right)\) \(e\left(\frac{7236}{25211}\right)\) \(e\left(\frac{8508}{25211}\right)\)
\(\chi_{50423}(3,\cdot)\) \(1\) \(1\) \(e\left(\frac{14293}{25211}\right)\) \(e\left(\frac{10566}{25211}\right)\) \(e\left(\frac{3375}{25211}\right)\) \(e\left(\frac{2576}{25211}\right)\) \(e\left(\frac{24859}{25211}\right)\) \(e\left(\frac{15872}{25211}\right)\) \(e\left(\frac{17668}{25211}\right)\) \(e\left(\frac{21132}{25211}\right)\) \(e\left(\frac{16869}{25211}\right)\) \(e\left(\frac{8295}{25211}\right)\)
\(\chi_{50423}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{2869}{25211}\right)\) \(e\left(\frac{3375}{25211}\right)\) \(e\left(\frac{5738}{25211}\right)\) \(e\left(\frac{11603}{25211}\right)\) \(e\left(\frac{6244}{25211}\right)\) \(e\left(\frac{4941}{25211}\right)\) \(e\left(\frac{8607}{25211}\right)\) \(e\left(\frac{6750}{25211}\right)\) \(e\left(\frac{14472}{25211}\right)\) \(e\left(\frac{17016}{25211}\right)\)
\(\chi_{50423}(6,\cdot)\) \(1\) \(1\) \(e\left(\frac{3122}{25211}\right)\) \(e\left(\frac{24859}{25211}\right)\) \(e\left(\frac{6244}{25211}\right)\) \(e\left(\frac{20983}{25211}\right)\) \(e\left(\frac{2770}{25211}\right)\) \(e\left(\frac{5737}{25211}\right)\) \(e\left(\frac{9366}{25211}\right)\) \(e\left(\frac{24507}{25211}\right)\) \(e\left(\frac{24105}{25211}\right)\) \(e\left(\frac{16803}{25211}\right)\)
\(\chi_{50423}(8,\cdot)\) \(1\) \(1\) \(e\left(\frac{16909}{25211}\right)\) \(e\left(\frac{17668}{25211}\right)\) \(e\left(\frac{8607}{25211}\right)\) \(e\left(\frac{4799}{25211}\right)\) \(e\left(\frac{9366}{25211}\right)\) \(e\left(\frac{20017}{25211}\right)\) \(e\left(\frac{305}{25211}\right)\) \(e\left(\frac{10125}{25211}\right)\) \(e\left(\frac{21708}{25211}\right)\) \(e\left(\frac{313}{25211}\right)\)
\(\chi_{50423}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{3375}{25211}\right)\) \(e\left(\frac{21132}{25211}\right)\) \(e\left(\frac{6750}{25211}\right)\) \(e\left(\frac{5152}{25211}\right)\) \(e\left(\frac{24507}{25211}\right)\) \(e\left(\frac{6533}{25211}\right)\) \(e\left(\frac{10125}{25211}\right)\) \(e\left(\frac{17053}{25211}\right)\) \(e\left(\frac{8527}{25211}\right)\) \(e\left(\frac{16590}{25211}\right)\)
\(\chi_{50423}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{8508}{25211}\right)\) \(e\left(\frac{8295}{25211}\right)\) \(e\left(\frac{17016}{25211}\right)\) \(e\left(\frac{17985}{25211}\right)\) \(e\left(\frac{16803}{25211}\right)\) \(e\left(\frac{10127}{25211}\right)\) \(e\left(\frac{313}{25211}\right)\) \(e\left(\frac{16590}{25211}\right)\) \(e\left(\frac{1282}{25211}\right)\) \(e\left(\frac{6190}{25211}\right)\)
\(\chi_{50423}(12,\cdot)\) \(1\) \(1\) \(e\left(\frac{17162}{25211}\right)\) \(e\left(\frac{13941}{25211}\right)\) \(e\left(\frac{9113}{25211}\right)\) \(e\left(\frac{14179}{25211}\right)\) \(e\left(\frac{5892}{25211}\right)\) \(e\left(\frac{20813}{25211}\right)\) \(e\left(\frac{1064}{25211}\right)\) \(e\left(\frac{2671}{25211}\right)\) \(e\left(\frac{6130}{25211}\right)\) \(e\left(\frac{100}{25211}\right)\)
\(\chi_{50423}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{15446}{25211}\right)\) \(e\left(\frac{7432}{25211}\right)\) \(e\left(\frac{5681}{25211}\right)\) \(e\left(\frac{25095}{25211}\right)\) \(e\left(\frac{22878}{25211}\right)\) \(e\left(\frac{6645}{25211}\right)\) \(e\left(\frac{21127}{25211}\right)\) \(e\left(\frac{14864}{25211}\right)\) \(e\left(\frac{15330}{25211}\right)\) \(e\left(\frac{12506}{25211}\right)\)
\(\chi_{50423}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{5738}{25211}\right)\) \(e\left(\frac{6750}{25211}\right)\) \(e\left(\frac{11476}{25211}\right)\) \(e\left(\frac{23206}{25211}\right)\) \(e\left(\frac{12488}{25211}\right)\) \(e\left(\frac{9882}{25211}\right)\) \(e\left(\frac{17214}{25211}\right)\) \(e\left(\frac{13500}{25211}\right)\) \(e\left(\frac{3733}{25211}\right)\) \(e\left(\frac{8821}{25211}\right)\)
\(\chi_{50423}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{22246}{25211}\right)\) \(e\left(\frac{6310}{25211}\right)\) \(e\left(\frac{19281}{25211}\right)\) \(e\left(\frac{17921}{25211}\right)\) \(e\left(\frac{3345}{25211}\right)\) \(e\left(\frac{23356}{25211}\right)\) \(e\left(\frac{16316}{25211}\right)\) \(e\left(\frac{12620}{25211}\right)\) \(e\left(\frac{14956}{25211}\right)\) \(e\left(\frac{23522}{25211}\right)\)
\(\chi_{50423}(18,\cdot)\) \(1\) \(1\) \(e\left(\frac{17415}{25211}\right)\) \(e\left(\frac{10214}{25211}\right)\) \(e\left(\frac{9619}{25211}\right)\) \(e\left(\frac{23559}{25211}\right)\) \(e\left(\frac{2418}{25211}\right)\) \(e\left(\frac{21609}{25211}\right)\) \(e\left(\frac{1823}{25211}\right)\) \(e\left(\frac{20428}{25211}\right)\) \(e\left(\frac{15763}{25211}\right)\) \(e\left(\frac{25098}{25211}\right)\)
\(\chi_{50423}(22,\cdot)\) \(1\) \(1\) \(e\left(\frac{22548}{25211}\right)\) \(e\left(\frac{22588}{25211}\right)\) \(e\left(\frac{19885}{25211}\right)\) \(e\left(\frac{11181}{25211}\right)\) \(e\left(\frac{19925}{25211}\right)\) \(e\left(\frac{25203}{25211}\right)\) \(e\left(\frac{17222}{25211}\right)\) \(e\left(\frac{19965}{25211}\right)\) \(e\left(\frac{8518}{25211}\right)\) \(e\left(\frac{14698}{25211}\right)\)
\(\chi_{50423}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{24621}{25211}\right)\) \(e\left(\frac{12777}{25211}\right)\) \(e\left(\frac{24031}{25211}\right)\) \(e\left(\frac{19679}{25211}\right)\) \(e\left(\frac{12187}{25211}\right)\) \(e\left(\frac{7411}{25211}\right)\) \(e\left(\frac{23441}{25211}\right)\) \(e\left(\frac{343}{25211}\right)\) \(e\left(\frac{19089}{25211}\right)\) \(e\left(\frac{4383}{25211}\right)\)
\(\chi_{50423}(24,\cdot)\) \(1\) \(1\) \(e\left(\frac{5991}{25211}\right)\) \(e\left(\frac{3023}{25211}\right)\) \(e\left(\frac{11982}{25211}\right)\) \(e\left(\frac{7375}{25211}\right)\) \(e\left(\frac{9014}{25211}\right)\) \(e\left(\frac{10678}{25211}\right)\) \(e\left(\frac{17973}{25211}\right)\) \(e\left(\frac{6046}{25211}\right)\) \(e\left(\frac{13366}{25211}\right)\) \(e\left(\frac{8608}{25211}\right)\)
\(\chi_{50423}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{11603}{25211}\right)\) \(e\left(\frac{5152}{25211}\right)\) \(e\left(\frac{23206}{25211}\right)\) \(e\left(\frac{1}{25211}\right)\) \(e\left(\frac{16755}{25211}\right)\) \(e\left(\frac{21459}{25211}\right)\) \(e\left(\frac{9598}{25211}\right)\) \(e\left(\frac{10304}{25211}\right)\) \(e\left(\frac{11604}{25211}\right)\) \(e\left(\frac{10759}{25211}\right)\)
\(\chi_{50423}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{4275}{25211}\right)\) \(e\left(\frac{21725}{25211}\right)\) \(e\left(\frac{8550}{25211}\right)\) \(e\left(\frac{18291}{25211}\right)\) \(e\left(\frac{789}{25211}\right)\) \(e\left(\frac{21721}{25211}\right)\) \(e\left(\frac{12825}{25211}\right)\) \(e\left(\frac{18239}{25211}\right)\) \(e\left(\frac{22566}{25211}\right)\) \(e\left(\frac{21014}{25211}\right)\)
\(\chi_{50423}(27,\cdot)\) \(1\) \(1\) \(e\left(\frac{17668}{25211}\right)\) \(e\left(\frac{6487}{25211}\right)\) \(e\left(\frac{10125}{25211}\right)\) \(e\left(\frac{7728}{25211}\right)\) \(e\left(\frac{24155}{25211}\right)\) \(e\left(\frac{22405}{25211}\right)\) \(e\left(\frac{2582}{25211}\right)\) \(e\left(\frac{12974}{25211}\right)\) \(e\left(\frac{185}{25211}\right)\) \(e\left(\frac{24885}{25211}\right)\)
\(\chi_{50423}(31,\cdot)\) \(1\) \(1\) \(e\left(\frac{24997}{25211}\right)\) \(e\left(\frac{2156}{25211}\right)\) \(e\left(\frac{24783}{25211}\right)\) \(e\left(\frac{13291}{25211}\right)\) \(e\left(\frac{1942}{25211}\right)\) \(e\left(\frac{24737}{25211}\right)\) \(e\left(\frac{24569}{25211}\right)\) \(e\left(\frac{4312}{25211}\right)\) \(e\left(\frac{13077}{25211}\right)\) \(e\left(\frac{1077}{25211}\right)\)
\(\chi_{50423}(32,\cdot)\) \(1\) \(1\) \(e\left(\frac{19778}{25211}\right)\) \(e\left(\frac{21043}{25211}\right)\) \(e\left(\frac{14345}{25211}\right)\) \(e\left(\frac{16402}{25211}\right)\) \(e\left(\frac{15610}{25211}\right)\) \(e\left(\frac{24958}{25211}\right)\) \(e\left(\frac{8912}{25211}\right)\) \(e\left(\frac{16875}{25211}\right)\) \(e\left(\frac{10969}{25211}\right)\) \(e\left(\frac{17329}{25211}\right)\)
\(\chi_{50423}(33,\cdot)\) \(1\) \(1\) \(e\left(\frac{22801}{25211}\right)\) \(e\left(\frac{18861}{25211}\right)\) \(e\left(\frac{20391}{25211}\right)\) \(e\left(\frac{20561}{25211}\right)\) \(e\left(\frac{16451}{25211}\right)\) \(e\left(\frac{788}{25211}\right)\) \(e\left(\frac{17981}{25211}\right)\) \(e\left(\frac{12511}{25211}\right)\) \(e\left(\frac{18151}{25211}\right)\) \(e\left(\frac{14485}{25211}\right)\)
\(\chi_{50423}(34,\cdot)\) \(1\) \(1\) \(e\left(\frac{11075}{25211}\right)\) \(e\left(\frac{20603}{25211}\right)\) \(e\left(\frac{22150}{25211}\right)\) \(e\left(\frac{11117}{25211}\right)\) \(e\left(\frac{6467}{25211}\right)\) \(e\left(\frac{13221}{25211}\right)\) \(e\left(\frac{8014}{25211}\right)\) \(e\left(\frac{15995}{25211}\right)\) \(e\left(\frac{22192}{25211}\right)\) \(e\left(\frac{6819}{25211}\right)\)
\(\chi_{50423}(35,\cdot)\) \(1\) \(1\) \(e\left(\frac{8272}{25211}\right)\) \(e\left(\frac{18448}{25211}\right)\) \(e\left(\frac{16544}{25211}\right)\) \(e\left(\frac{10730}{25211}\right)\) \(e\left(\frac{1509}{25211}\right)\) \(e\left(\frac{3007}{25211}\right)\) \(e\left(\frac{24816}{25211}\right)\) \(e\left(\frac{11685}{25211}\right)\) \(e\left(\frac{19002}{25211}\right)\) \(e\left(\frac{2901}{25211}\right)\)
\(\chi_{50423}(36,\cdot)\) \(1\) \(1\) \(e\left(\frac{6244}{25211}\right)\) \(e\left(\frac{24507}{25211}\right)\) \(e\left(\frac{12488}{25211}\right)\) \(e\left(\frac{16755}{25211}\right)\) \(e\left(\frac{5540}{25211}\right)\) \(e\left(\frac{11474}{25211}\right)\) \(e\left(\frac{18732}{25211}\right)\) \(e\left(\frac{23803}{25211}\right)\) \(e\left(\frac{22999}{25211}\right)\) \(e\left(\frac{8395}{25211}\right)\)
\(\chi_{50423}(39,\cdot)\) \(1\) \(1\) \(e\left(\frac{4528}{25211}\right)\) \(e\left(\frac{17998}{25211}\right)\) \(e\left(\frac{9056}{25211}\right)\) \(e\left(\frac{2460}{25211}\right)\) \(e\left(\frac{22526}{25211}\right)\) \(e\left(\frac{22517}{25211}\right)\) \(e\left(\frac{13584}{25211}\right)\) \(e\left(\frac{10785}{25211}\right)\) \(e\left(\frac{6988}{25211}\right)\) \(e\left(\frac{20801}{25211}\right)\)
\(\chi_{50423}(43,\cdot)\) \(1\) \(1\) \(e\left(\frac{20211}{25211}\right)\) \(e\left(\frac{2308}{25211}\right)\) \(e\left(\frac{15211}{25211}\right)\) \(e\left(\frac{8241}{25211}\right)\) \(e\left(\frac{22519}{25211}\right)\) \(e\left(\frac{13665}{25211}\right)\) \(e\left(\frac{10211}{25211}\right)\) \(e\left(\frac{4616}{25211}\right)\) \(e\left(\frac{3241}{25211}\right)\) \(e\left(\frac{23043}{25211}\right)\)
\(\chi_{50423}(44,\cdot)\) \(1\) \(1\) \(e\left(\frac{11377}{25211}\right)\) \(e\left(\frac{11670}{25211}\right)\) \(e\left(\frac{22754}{25211}\right)\) \(e\left(\frac{4377}{25211}\right)\) \(e\left(\frac{23047}{25211}\right)\) \(e\left(\frac{15068}{25211}\right)\) \(e\left(\frac{8920}{25211}\right)\) \(e\left(\frac{23340}{25211}\right)\) \(e\left(\frac{15754}{25211}\right)\) \(e\left(\frac{23206}{25211}\right)\)
\(\chi_{50423}(46,\cdot)\) \(1\) \(1\) \(e\left(\frac{13450}{25211}\right)\) \(e\left(\frac{1859}{25211}\right)\) \(e\left(\frac{1689}{25211}\right)\) \(e\left(\frac{12875}{25211}\right)\) \(e\left(\frac{15309}{25211}\right)\) \(e\left(\frac{22487}{25211}\right)\) \(e\left(\frac{15139}{25211}\right)\) \(e\left(\frac{3718}{25211}\right)\) \(e\left(\frac{1114}{25211}\right)\) \(e\left(\frac{12891}{25211}\right)\)
\(\chi_{50423}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{18765}{25211}\right)\) \(e\left(\frac{23709}{25211}\right)\) \(e\left(\frac{12319}{25211}\right)\) \(e\left(\frac{5451}{25211}\right)\) \(e\left(\frac{17263}{25211}\right)\) \(e\left(\frac{19180}{25211}\right)\) \(e\left(\frac{5873}{25211}\right)\) \(e\left(\frac{22207}{25211}\right)\) \(e\left(\frac{24216}{25211}\right)\) \(e\left(\frac{6523}{25211}\right)\)
\(\chi_{50423}(48,\cdot)\) \(1\) \(1\) \(e\left(\frac{20031}{25211}\right)\) \(e\left(\frac{17316}{25211}\right)\) \(e\left(\frac{14851}{25211}\right)\) \(e\left(\frac{571}{25211}\right)\) \(e\left(\frac{12136}{25211}\right)\) \(e\left(\frac{543}{25211}\right)\) \(e\left(\frac{9671}{25211}\right)\) \(e\left(\frac{9421}{25211}\right)\) \(e\left(\frac{20602}{25211}\right)\) \(e\left(\frac{17116}{25211}\right)\)
\(\chi_{50423}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{4941}{25211}\right)\) \(e\left(\frac{6533}{25211}\right)\) \(e\left(\frac{9882}{25211}\right)\) \(e\left(\frac{21459}{25211}\right)\) \(e\left(\frac{11474}{25211}\right)\) \(e\left(\frac{9766}{25211}\right)\) \(e\left(\frac{14823}{25211}\right)\) \(e\left(\frac{13066}{25211}\right)\) \(e\left(\frac{1189}{25211}\right)\) \(e\left(\frac{20254}{25211}\right)\)