sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(50423, base_ring=CyclotomicField(50422))
M = H._module
chi = DirichletCharacter(H, M([42918]))
pari:[g,chi] = znchar(Mod(49,50423))
| Modulus: | \(50423\) | |
| Conductor: | \(50423\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(25211\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{50423}(2,\cdot)\)
\(\chi_{50423}(3,\cdot)\)
\(\chi_{50423}(4,\cdot)\)
\(\chi_{50423}(6,\cdot)\)
\(\chi_{50423}(8,\cdot)\)
\(\chi_{50423}(9,\cdot)\)
\(\chi_{50423}(11,\cdot)\)
\(\chi_{50423}(12,\cdot)\)
\(\chi_{50423}(13,\cdot)\)
\(\chi_{50423}(16,\cdot)\)
\(\chi_{50423}(17,\cdot)\)
\(\chi_{50423}(18,\cdot)\)
\(\chi_{50423}(22,\cdot)\)
\(\chi_{50423}(23,\cdot)\)
\(\chi_{50423}(24,\cdot)\)
\(\chi_{50423}(25,\cdot)\)
\(\chi_{50423}(26,\cdot)\)
\(\chi_{50423}(27,\cdot)\)
\(\chi_{50423}(31,\cdot)\)
\(\chi_{50423}(32,\cdot)\)
\(\chi_{50423}(33,\cdot)\)
\(\chi_{50423}(34,\cdot)\)
\(\chi_{50423}(35,\cdot)\)
\(\chi_{50423}(36,\cdot)\)
\(\chi_{50423}(39,\cdot)\)
\(\chi_{50423}(43,\cdot)\)
\(\chi_{50423}(44,\cdot)\)
\(\chi_{50423}(46,\cdot)\)
\(\chi_{50423}(47,\cdot)\)
\(\chi_{50423}(48,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(5\) → \(e\left(\frac{21459}{25211}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 50423 }(49, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4941}{25211}\right)\) | \(e\left(\frac{6533}{25211}\right)\) | \(e\left(\frac{9882}{25211}\right)\) | \(e\left(\frac{21459}{25211}\right)\) | \(e\left(\frac{11474}{25211}\right)\) | \(e\left(\frac{9766}{25211}\right)\) | \(e\left(\frac{14823}{25211}\right)\) | \(e\left(\frac{13066}{25211}\right)\) | \(e\left(\frac{1189}{25211}\right)\) | \(e\left(\frac{20254}{25211}\right)\) |
sage:chi.jacobi_sum(n)