sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5041, base_ring=CyclotomicField(142))
M = H._module
chi = DirichletCharacter(H, M([86]))
pari:[g,chi] = znchar(Mod(1634,5041))
| Modulus: | \(5041\) | |
| Conductor: | \(5041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(71\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{5041}(72,\cdot)\)
\(\chi_{5041}(143,\cdot)\)
\(\chi_{5041}(214,\cdot)\)
\(\chi_{5041}(285,\cdot)\)
\(\chi_{5041}(356,\cdot)\)
\(\chi_{5041}(427,\cdot)\)
\(\chi_{5041}(498,\cdot)\)
\(\chi_{5041}(569,\cdot)\)
\(\chi_{5041}(640,\cdot)\)
\(\chi_{5041}(711,\cdot)\)
\(\chi_{5041}(782,\cdot)\)
\(\chi_{5041}(853,\cdot)\)
\(\chi_{5041}(924,\cdot)\)
\(\chi_{5041}(995,\cdot)\)
\(\chi_{5041}(1066,\cdot)\)
\(\chi_{5041}(1137,\cdot)\)
\(\chi_{5041}(1208,\cdot)\)
\(\chi_{5041}(1279,\cdot)\)
\(\chi_{5041}(1350,\cdot)\)
\(\chi_{5041}(1421,\cdot)\)
\(\chi_{5041}(1492,\cdot)\)
\(\chi_{5041}(1563,\cdot)\)
\(\chi_{5041}(1634,\cdot)\)
\(\chi_{5041}(1705,\cdot)\)
\(\chi_{5041}(1776,\cdot)\)
\(\chi_{5041}(1847,\cdot)\)
\(\chi_{5041}(1918,\cdot)\)
\(\chi_{5041}(1989,\cdot)\)
\(\chi_{5041}(2060,\cdot)\)
\(\chi_{5041}(2131,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(7\) → \(e\left(\frac{43}{71}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 5041 }(1634, a) \) |
\(1\) | \(1\) | \(e\left(\frac{62}{71}\right)\) | \(e\left(\frac{69}{71}\right)\) | \(e\left(\frac{53}{71}\right)\) | \(e\left(\frac{68}{71}\right)\) | \(e\left(\frac{60}{71}\right)\) | \(e\left(\frac{43}{71}\right)\) | \(e\left(\frac{44}{71}\right)\) | \(e\left(\frac{67}{71}\right)\) | \(e\left(\frac{59}{71}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)