Properties

Label 5041.i
Modulus $5041$
Conductor $5041$
Order $71$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5041, base_ring=CyclotomicField(142)) M = H._module chi = DirichletCharacter(H, M([84])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(72,5041)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5041\)
Conductor: \(5041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(71\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{71})$
Fixed field: Number field defined by a degree 71 polynomial

First 31 of 70 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{5041}(72,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{71}\right)\) \(e\left(\frac{3}{71}\right)\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{40}{71}\right)\) \(e\left(\frac{52}{71}\right)\) \(e\left(\frac{42}{71}\right)\) \(e\left(\frac{5}{71}\right)\) \(e\left(\frac{6}{71}\right)\) \(e\left(\frac{18}{71}\right)\) \(1\)
\(\chi_{5041}(143,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{6}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{9}{71}\right)\) \(e\left(\frac{33}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{12}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(1\)
\(\chi_{5041}(214,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{71}\right)\) \(e\left(\frac{9}{71}\right)\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{49}{71}\right)\) \(e\left(\frac{14}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(e\left(\frac{15}{71}\right)\) \(e\left(\frac{18}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(1\)
\(\chi_{5041}(285,\cdot)\) \(1\) \(1\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{12}{71}\right)\) \(e\left(\frac{37}{71}\right)\) \(e\left(\frac{18}{71}\right)\) \(e\left(\frac{66}{71}\right)\) \(e\left(\frac{26}{71}\right)\) \(e\left(\frac{20}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(e\left(\frac{1}{71}\right)\) \(1\)
\(\chi_{5041}(356,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{71}\right)\) \(e\left(\frac{15}{71}\right)\) \(e\left(\frac{64}{71}\right)\) \(e\left(\frac{58}{71}\right)\) \(e\left(\frac{47}{71}\right)\) \(e\left(\frac{68}{71}\right)\) \(e\left(\frac{25}{71}\right)\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(1\)
\(\chi_{5041}(427,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{18}{71}\right)\) \(e\left(\frac{20}{71}\right)\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{28}{71}\right)\) \(e\left(\frac{39}{71}\right)\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{37}{71}\right)\) \(1\)
\(\chi_{5041}(498,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{71}\right)\) \(e\left(\frac{21}{71}\right)\) \(e\left(\frac{47}{71}\right)\) \(e\left(\frac{67}{71}\right)\) \(e\left(\frac{9}{71}\right)\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{35}{71}\right)\) \(e\left(\frac{42}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(1\)
\(\chi_{5041}(569,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(e\left(\frac{3}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{61}{71}\right)\) \(e\left(\frac{52}{71}\right)\) \(e\left(\frac{40}{71}\right)\) \(e\left(\frac{48}{71}\right)\) \(e\left(\frac{2}{71}\right)\) \(1\)
\(\chi_{5041}(640,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{71}\right)\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{5}{71}\right)\) \(e\left(\frac{42}{71}\right)\) \(e\left(\frac{23}{71}\right)\) \(e\left(\frac{45}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{20}{71}\right)\) \(1\)
\(\chi_{5041}(711,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{71}\right)\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{57}{71}\right)\) \(e\left(\frac{45}{71}\right)\) \(e\left(\frac{23}{71}\right)\) \(e\left(\frac{65}{71}\right)\) \(e\left(\frac{50}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(e\left(\frac{38}{71}\right)\) \(1\)
\(\chi_{5041}(782,\cdot)\) \(1\) \(1\) \(e\left(\frac{42}{71}\right)\) \(e\left(\frac{33}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{14}{71}\right)\) \(e\left(\frac{4}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(e\left(\frac{66}{71}\right)\) \(e\left(\frac{56}{71}\right)\) \(1\)
\(\chi_{5041}(853,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{40}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{56}{71}\right)\) \(e\left(\frac{7}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(e\left(\frac{1}{71}\right)\) \(e\left(\frac{3}{71}\right)\) \(1\)
\(\chi_{5041}(924,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{71}\right)\) \(e\left(\frac{39}{71}\right)\) \(e\left(\frac{67}{71}\right)\) \(e\left(\frac{23}{71}\right)\) \(e\left(\frac{37}{71}\right)\) \(e\left(\frac{49}{71}\right)\) \(e\left(\frac{65}{71}\right)\) \(e\left(\frac{7}{71}\right)\) \(e\left(\frac{21}{71}\right)\) \(1\)
\(\chi_{5041}(995,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{71}\right)\) \(e\left(\frac{42}{71}\right)\) \(e\left(\frac{23}{71}\right)\) \(e\left(\frac{63}{71}\right)\) \(e\left(\frac{18}{71}\right)\) \(e\left(\frac{20}{71}\right)\) \(e\left(\frac{70}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{39}{71}\right)\) \(1\)
\(\chi_{5041}(1066,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{71}\right)\) \(e\left(\frac{45}{71}\right)\) \(e\left(\frac{50}{71}\right)\) \(e\left(\frac{32}{71}\right)\) \(e\left(\frac{70}{71}\right)\) \(e\left(\frac{62}{71}\right)\) \(e\left(\frac{4}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(e\left(\frac{57}{71}\right)\) \(1\)
\(\chi_{5041}(1137,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{71}\right)\) \(e\left(\frac{48}{71}\right)\) \(e\left(\frac{6}{71}\right)\) \(e\left(\frac{1}{71}\right)\) \(e\left(\frac{51}{71}\right)\) \(e\left(\frac{33}{71}\right)\) \(e\left(\frac{9}{71}\right)\) \(e\left(\frac{25}{71}\right)\) \(e\left(\frac{4}{71}\right)\) \(1\)
\(\chi_{5041}(1208,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{71}\right)\) \(e\left(\frac{51}{71}\right)\) \(e\left(\frac{33}{71}\right)\) \(e\left(\frac{41}{71}\right)\) \(e\left(\frac{32}{71}\right)\) \(e\left(\frac{4}{71}\right)\) \(e\left(\frac{14}{71}\right)\) \(e\left(\frac{31}{71}\right)\) \(e\left(\frac{22}{71}\right)\) \(1\)
\(\chi_{5041}(1279,\cdot)\) \(1\) \(1\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{46}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(e\left(\frac{37}{71}\right)\) \(e\left(\frac{40}{71}\right)\) \(1\)
\(\chi_{5041}(1350,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{71}\right)\) \(e\left(\frac{57}{71}\right)\) \(e\left(\frac{16}{71}\right)\) \(e\left(\frac{50}{71}\right)\) \(e\left(\frac{65}{71}\right)\) \(e\left(\frac{17}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(e\left(\frac{43}{71}\right)\) \(e\left(\frac{58}{71}\right)\) \(1\)
\(\chi_{5041}(1421,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(e\left(\frac{43}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(e\left(\frac{46}{71}\right)\) \(e\left(\frac{59}{71}\right)\) \(e\left(\frac{29}{71}\right)\) \(e\left(\frac{49}{71}\right)\) \(e\left(\frac{5}{71}\right)\) \(1\)
\(\chi_{5041}(1492,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{71}\right)\) \(e\left(\frac{63}{71}\right)\) \(e\left(\frac{70}{71}\right)\) \(e\left(\frac{59}{71}\right)\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{30}{71}\right)\) \(e\left(\frac{34}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(e\left(\frac{23}{71}\right)\) \(1\)
\(\chi_{5041}(1563,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{66}{71}\right)\) \(e\left(\frac{26}{71}\right)\) \(e\left(\frac{28}{71}\right)\) \(e\left(\frac{8}{71}\right)\) \(e\left(\frac{1}{71}\right)\) \(e\left(\frac{39}{71}\right)\) \(e\left(\frac{61}{71}\right)\) \(e\left(\frac{41}{71}\right)\) \(1\)
\(\chi_{5041}(1634,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{71}\right)\) \(e\left(\frac{69}{71}\right)\) \(e\left(\frac{53}{71}\right)\) \(e\left(\frac{68}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(e\left(\frac{43}{71}\right)\) \(e\left(\frac{44}{71}\right)\) \(e\left(\frac{67}{71}\right)\) \(e\left(\frac{59}{71}\right)\) \(1\)
\(\chi_{5041}(1705,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{71}\right)\) \(e\left(\frac{1}{71}\right)\) \(e\left(\frac{9}{71}\right)\) \(e\left(\frac{37}{71}\right)\) \(e\left(\frac{41}{71}\right)\) \(e\left(\frac{14}{71}\right)\) \(e\left(\frac{49}{71}\right)\) \(e\left(\frac{2}{71}\right)\) \(e\left(\frac{6}{71}\right)\) \(1\)
\(\chi_{5041}(1776,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{71}\right)\) \(e\left(\frac{4}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{6}{71}\right)\) \(e\left(\frac{22}{71}\right)\) \(e\left(\frac{56}{71}\right)\) \(e\left(\frac{54}{71}\right)\) \(e\left(\frac{8}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(1\)
\(\chi_{5041}(1847,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{71}\right)\) \(e\left(\frac{7}{71}\right)\) \(e\left(\frac{63}{71}\right)\) \(e\left(\frac{46}{71}\right)\) \(e\left(\frac{3}{71}\right)\) \(e\left(\frac{27}{71}\right)\) \(e\left(\frac{59}{71}\right)\) \(e\left(\frac{14}{71}\right)\) \(e\left(\frac{42}{71}\right)\) \(1\)
\(\chi_{5041}(1918,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{71}\right)\) \(e\left(\frac{10}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(e\left(\frac{15}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(e\left(\frac{69}{71}\right)\) \(e\left(\frac{64}{71}\right)\) \(e\left(\frac{20}{71}\right)\) \(e\left(\frac{60}{71}\right)\) \(1\)
\(\chi_{5041}(1989,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{46}{71}\right)\) \(e\left(\frac{55}{71}\right)\) \(e\left(\frac{36}{71}\right)\) \(e\left(\frac{40}{71}\right)\) \(e\left(\frac{69}{71}\right)\) \(e\left(\frac{26}{71}\right)\) \(e\left(\frac{7}{71}\right)\) \(1\)
\(\chi_{5041}(2060,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{71}\right)\) \(e\left(\frac{16}{71}\right)\) \(e\left(\frac{2}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(e\left(\frac{17}{71}\right)\) \(e\left(\frac{11}{71}\right)\) \(e\left(\frac{3}{71}\right)\) \(e\left(\frac{32}{71}\right)\) \(e\left(\frac{25}{71}\right)\) \(1\)
\(\chi_{5041}(2131,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{71}\right)\) \(e\left(\frac{19}{71}\right)\) \(e\left(\frac{29}{71}\right)\) \(e\left(\frac{64}{71}\right)\) \(e\left(\frac{69}{71}\right)\) \(e\left(\frac{53}{71}\right)\) \(e\left(\frac{8}{71}\right)\) \(e\left(\frac{38}{71}\right)\) \(e\left(\frac{43}{71}\right)\) \(1\)
\(\chi_{5041}(2202,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{71}\right)\) \(e\left(\frac{22}{71}\right)\) \(e\left(\frac{56}{71}\right)\) \(e\left(\frac{33}{71}\right)\) \(e\left(\frac{50}{71}\right)\) \(e\left(\frac{24}{71}\right)\) \(e\left(\frac{13}{71}\right)\) \(e\left(\frac{44}{71}\right)\) \(e\left(\frac{61}{71}\right)\) \(1\)