sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4998, base_ring=CyclotomicField(336))
M = H._module
chi = DirichletCharacter(H, M([0,296,105]))
pari:[g,chi] = znchar(Mod(73,4998))
\(\chi_{4998}(61,\cdot)\)
\(\chi_{4998}(73,\cdot)\)
\(\chi_{4998}(199,\cdot)\)
\(\chi_{4998}(241,\cdot)\)
\(\chi_{4998}(283,\cdot)\)
\(\chi_{4998}(367,\cdot)\)
\(\chi_{4998}(397,\cdot)\)
\(\chi_{4998}(439,\cdot)\)
\(\chi_{4998}(481,\cdot)\)
\(\chi_{4998}(649,\cdot)\)
\(\chi_{4998}(691,\cdot)\)
\(\chi_{4998}(703,\cdot)\)
\(\chi_{4998}(745,\cdot)\)
\(\chi_{4998}(775,\cdot)\)
\(\chi_{4998}(787,\cdot)\)
\(\chi_{4998}(955,\cdot)\)
\(\chi_{4998}(997,\cdot)\)
\(\chi_{4998}(1027,\cdot)\)
\(\chi_{4998}(1081,\cdot)\)
\(\chi_{4998}(1111,\cdot)\)
\(\chi_{4998}(1153,\cdot)\)
\(\chi_{4998}(1321,\cdot)\)
\(\chi_{4998}(1333,\cdot)\)
\(\chi_{4998}(1363,\cdot)\)
\(\chi_{4998}(1405,\cdot)\)
\(\chi_{4998}(1417,\cdot)\)
\(\chi_{4998}(1459,\cdot)\)
\(\chi_{4998}(1627,\cdot)\)
\(\chi_{4998}(1669,\cdot)\)
\(\chi_{4998}(1711,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1667,2551,4117)\) → \((1,e\left(\frac{37}{42}\right),e\left(\frac{5}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 4998 }(73, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{336}\right)\) | \(e\left(\frac{143}{336}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{55}{336}\right)\) | \(e\left(\frac{37}{168}\right)\) | \(e\left(\frac{103}{112}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{169}{336}\right)\) | \(e\left(\frac{73}{112}\right)\) |
sage:chi.jacobi_sum(n)