Properties

Label 4998.241
Modulus $4998$
Conductor $833$
Order $336$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4998, base_ring=CyclotomicField(336)) M = H._module chi = DirichletCharacter(H, M([0,248,21]))
 
Copy content pari:[g,chi] = znchar(Mod(241,4998))
 

Basic properties

Modulus: \(4998\)
Conductor: \(833\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(336\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{833}(241,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4998.da

\(\chi_{4998}(61,\cdot)\) \(\chi_{4998}(73,\cdot)\) \(\chi_{4998}(199,\cdot)\) \(\chi_{4998}(241,\cdot)\) \(\chi_{4998}(283,\cdot)\) \(\chi_{4998}(367,\cdot)\) \(\chi_{4998}(397,\cdot)\) \(\chi_{4998}(439,\cdot)\) \(\chi_{4998}(481,\cdot)\) \(\chi_{4998}(649,\cdot)\) \(\chi_{4998}(691,\cdot)\) \(\chi_{4998}(703,\cdot)\) \(\chi_{4998}(745,\cdot)\) \(\chi_{4998}(775,\cdot)\) \(\chi_{4998}(787,\cdot)\) \(\chi_{4998}(955,\cdot)\) \(\chi_{4998}(997,\cdot)\) \(\chi_{4998}(1027,\cdot)\) \(\chi_{4998}(1081,\cdot)\) \(\chi_{4998}(1111,\cdot)\) \(\chi_{4998}(1153,\cdot)\) \(\chi_{4998}(1321,\cdot)\) \(\chi_{4998}(1333,\cdot)\) \(\chi_{4998}(1363,\cdot)\) \(\chi_{4998}(1405,\cdot)\) \(\chi_{4998}(1417,\cdot)\) \(\chi_{4998}(1459,\cdot)\) \(\chi_{4998}(1627,\cdot)\) \(\chi_{4998}(1669,\cdot)\) \(\chi_{4998}(1711,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{336})$
Fixed field: Number field defined by a degree 336 polynomial (not computed)

Values on generators

\((1667,2551,4117)\) → \((1,e\left(\frac{31}{42}\right),e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 4998 }(241, a) \) \(1\)\(1\)\(e\left(\frac{241}{336}\right)\)\(e\left(\frac{323}{336}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{331}{336}\right)\)\(e\left(\frac{73}{168}\right)\)\(e\left(\frac{11}{112}\right)\)\(e\left(\frac{35}{48}\right)\)\(e\left(\frac{229}{336}\right)\)\(e\left(\frac{85}{112}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4998 }(241,a) \;\) at \(\;a = \) e.g. 2