sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(497, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,78]))
pari:[g,chi] = znchar(Mod(3,497))
| Modulus: | \(497\) | |
| Conductor: | \(497\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{497}(3,\cdot)\)
\(\chi_{497}(10,\cdot)\)
\(\chi_{497}(12,\cdot)\)
\(\chi_{497}(19,\cdot)\)
\(\chi_{497}(24,\cdot)\)
\(\chi_{497}(38,\cdot)\)
\(\chi_{497}(40,\cdot)\)
\(\chi_{497}(73,\cdot)\)
\(\chi_{497}(75,\cdot)\)
\(\chi_{497}(80,\cdot)\)
\(\chi_{497}(87,\cdot)\)
\(\chi_{497}(89,\cdot)\)
\(\chi_{497}(129,\cdot)\)
\(\chi_{497}(131,\cdot)\)
\(\chi_{497}(145,\cdot)\)
\(\chi_{497}(150,\cdot)\)
\(\chi_{497}(152,\cdot)\)
\(\chi_{497}(157,\cdot)\)
\(\chi_{497}(166,\cdot)\)
\(\chi_{497}(171,\cdot)\)
\(\chi_{497}(178,\cdot)\)
\(\chi_{497}(180,\cdot)\)
\(\chi_{497}(185,\cdot)\)
\(\chi_{497}(192,\cdot)\)
\(\chi_{497}(206,\cdot)\)
\(\chi_{497}(215,\cdot)\)
\(\chi_{497}(222,\cdot)\)
\(\chi_{497}(229,\cdot)\)
\(\chi_{497}(262,\cdot)\)
\(\chi_{497}(271,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((143,78)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{13}{35}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 497 }(3, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{59}{105}\right)\) | \(e\left(\frac{173}{210}\right)\) | \(e\left(\frac{13}{105}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{24}{35}\right)\) | \(e\left(\frac{68}{105}\right)\) | \(e\left(\frac{167}{210}\right)\) | \(e\left(\frac{19}{105}\right)\) | \(e\left(\frac{199}{210}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)